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Abstract

A clutter is clean if it has no delta or the blocker of an extended odd hole minor, and it is tangled if its

covering number is two and every element appears in a minimum cover. Clean tangled clutters have been

instrumental in progress towards several open problems on ideal clutters, including the τ = 2 Conjecture.

Let C be a clean tangled clutter. It was recently proved that C has a fractional packing of value two.

Collecting the supports of all such fractional packings, we obtain what is called the core of C. The core is a

duplication of the cuboid of a set of 0− 1 points, called the setcore of C.

In this paper, we prove three results about the setcore. First, the convex hull of the setcore is a full-

dimensional polytope containing the center point of the hypercube in its interior. Secondly, this polytope is a

simplex if, and only if, the setcore is the cocycle space of a projective geometry over the two-element field.

Finally, if this polytope is a simplex of dimension more than three, then C has the clutter of the lines of the

Fano plane as a minor.

Our results expose a fascinating interplay between the combinatorics and the geometry of clean tangled

clutters.

Keywords. Clutters, ideal clutters, odd holes, degenerate projective planes, projective geometries over the

two-element field, simplices.
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1 Introduction

A clutter is a family C of subsets of a finite set V where no set contains another one [16]. We refer to V as

the ground set, to the elements in V simply as elements, and to the sets in C as members. A transversal is any

subset of V that intersects every member exactly once, whereas a cover is any subset of V that intersects every

member at least once. A cover is minimal if it does not contain another cover. The family of the minimal covers

of C forms another clutter over ground set V ; this clutter is called the blocker of C and is denoted b(C). It is

well-known that b(b(C)) = C [16, 18]. Given disjoint I, J ⊆ V , the minor of C obtained after deleting I and

contracting J is the clutter C \ I/J over ground set V − (I ∪J) whose members are the inclusion-wise minimal

sets in {C − J : C ∈ C, C ∩ I = ∅}. It is well-known that b(C \ I/J) = b(C)/I \ J [23].

A delta is any clutter over a ground set of cardinality at least three, say {a1, a2, a3, . . . , an}, whose members

are {a2, a3, . . . , an} and {a1, ai}, i = 2, . . . , n. (See Figure 1.) Observe that a delta is identically self-blocking,

that is, every member is a minimal cover, and vice versa. Observe further that the elements and members of a

delta correspond to the points and lines of a degenerate projective plane.

An extended odd hole is any clutter over a ground set of cardinality at least five and odd, say {a1, . . . , an},
whose minimum cardinality members are {a1, a2}, {a2, a3}, . . . , {an−1, an}, {an, a1}. That is, the minimum

cardinality members correspond to the edges of an odd hole. (See Figure 1.) Note that there may exist other

members, but those members would have cardinality at least three. Observe that every cover of an extended odd

hole with n elements has cardinality at least n+1
2 .

Definition 1.1 ([3]). A clutter is clean if it has no minor that is a delta or the blocker of an extended odd hole.

Observe that if a clutter is clean, then so is every minor of it. Clean clutters were introduced recently and a

polynomial recognition algorithm was provided for them [8]. The class of clean clutters includes ideal clutters,

clutters without an intersecting minor, and binary clutters [3].

The covering number of a clutter C, denoted τ(C), is the minimum cardinality of a cover.

Definition 1.2 ([5]). A clutter is tangled if it has covering number two and every element belongs to a minimum

cover.

Observe that if a clutter has covering number at least two, then it has a tangled minor, obtained by repeatedly

deleting elements that keep the covering number at least two.

Let us define an important class of tangled clutters. A clutter is a cuboid if its ground set can be relabeled

[2n] := {1, . . . , 2n} for some integer n ≥ 1, such that {1, 2}, {3, 4}, . . . , {2n−1, 2n} are transversals [12, 4]. In

particular, every member has cardinality n. Note that every cuboid without a cover of cardinality one is tangled.

Consider, for instance, the clutter Q6 = {{2, 4, 6}, {1, 3, 6}, {1, 4, 5}, {2, 3, 5}}, whose elements and members

correspond to the edges and triangles of the complete graph K4, as labeled in Figure 1. Then Q6 is a cuboid – as

{1, 2}, {3, 4}, {5, 6} are transversals – without a cover of cardinality one. Moreover, it can be readily checked

that Q6 has no minor that is a delta or the blocker of an extended odd hole. Consequently, Q6 is a clean tangled

clutter.

3



…

a1

<latexit sha1_base64="CcOlsYip8mvLuZmMk549+Po4C1g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0QPtev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1atVL+9rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwDrL42R</latexit>

a2

<latexit sha1_base64="bn042XOjc28JOG5tTWiRF6OtLgo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOle9qv9csVt+rOQVaJl5MK5Gj2y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnXql69enFXrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QPss42S</latexit>

a3

<latexit sha1_base64="S/04sO5YEtNPcRbLbrNRfVmiGXA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oseiF48V7Qe0oUy2m3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVlDVpLGLVCVAzwSVrGm4E6ySKYRQI1g7GNzO//ciU5rF8MJOE+REOJQ85RWOle+yf98sVt+rOQf4SLycVyNHolz97g5imEZOGCtS667mJ8TNUhlPBpqVeqlmCdIxD1rVUYsS0n81PnZITqwxIGCtb0pC5+nMiw0jrSRTYzgjNSC97M/E/r5ua8MrPuExSwyRdLApTQUxMZn+TAVeMGjGxBKni9lZCR6iQGptOyYbgLb/8l7TOql6tenFXq9Sv8ziKcATHcAoeXEIdbqEBTaAwhCd4gVdHOM/Om/O+aC04+cwh/ILz8Q3uN42T</latexit>

an

<latexit sha1_base64="oC5OI+xmMUNL1nf2jx9utDyfu5E=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9pX/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSeui6tWql/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP0eyjc4=</latexit>

. . .<latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit><latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit><latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit><latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit>

a1

<latexit sha1_base64="CcOlsYip8mvLuZmMk549+Po4C1g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0QPtev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1atVL+9rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwDrL42R</latexit>

a2

<latexit sha1_base64="bn042XOjc28JOG5tTWiRF6OtLgo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOle9qv9csVt+rOQVaJl5MK5Gj2y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnXql69enFXrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QPss42S</latexit>

an�1

<latexit sha1_base64="7whanNmzdO+f2ythxw7Yf81CGQI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRih6LXjxWsB/QhrLZbtqlm03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38389hPXRsTqEScJ9yM6VCIUjKKV2rSfqQtv2i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+7pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwxs/EypJkSu2WBSmkmBMZr+TgdCcoZxYQpkW9lbCRlRThjahkg3BW355lbQuq16tevVQq9Rv8ziKcAKncA4eXEMd7qEBTWAwhmd4hTcncV6cd+dj0Vpw8plj+APn8wfolY9M</latexit>

an

<latexit sha1_base64="oC5OI+xmMUNL1nf2jx9utDyfu5E=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9pX/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSeui6tWql/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP0eyjc4=</latexit>

a3

<latexit sha1_base64="kSErQzwt5+QlRPEp2pZQNhRG7Xs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oN6KXjxWtB/QhjLZbtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUUdaksYhVJ0DNBJesabgRrJMohlEgWDsY38z89iNTmsfywUwS5kc4lDzkFI2V7rF/3i9X3Ko7B/lLvJxUIEejX/7sDWKaRkwaKlDrrucmxs9QGU4Fm5Z6qWYJ0jEOWddSiRHTfjY/dUpOrDIgYaxsSUPm6s+JDCOtJ1FgOyM0I73szcT/vG5qwks/4zJJDZN0sShMBTExmf1NBlwxasTEEqSK21sJHaFCamw6JRuCt/zyX9I6q3q16tVdrVK/zuMowhEcwyl4cAF1uIUGNIHCEJ7gBV4d4Tw7b877orXg5DOH8AvOxzfvf42X</latexit>

1

<latexit sha1_base64="wQ+2foIZ8ymAbto+K5qO6s2mJBk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2Vml6/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxNe+RmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S9kXVq1Wvm7VK/SaPowgncArn4MEl1OEOGtACBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/fn2MwQ==</latexit>

2

<latexit sha1_base64="K7k9OmA81cq5/EytLpoXKM35iwY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGgHoLevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M7+Z++wmV5rF8MJME/YgOJQ85o8ZKjUq/WHLL7gJknXgZKUGGer/41RvELI1QGiao1l3PTYw/pcpwJnBW6KUaE8rGdIhdSyWNUPvTxaEzcmGVAQljZUsaslB/T0xppPUkCmxnRM1Ir3pz8T+vm5rw2p9ymaQGJVsuClNBTEzmX5MBV8iMmFhCmeL2VsJGVFFmbDYFG4K3+vI6aVXKXrV806iWardZHHk4g3O4BA+uoAb3UIcmMEB4hld4cx6dF+fd+Vi25pxs5hT+wPn8AYABjMI=</latexit>

3

<latexit sha1_base64="UUpzNYn7KJ4u5TXE3ucIC87YlRI=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexqQL0FvXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGdzO/9YRK81g+mHGCfkQHkoecUWOl+mWvWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6UvUr5pl4pVW+zOPJwAqdwDh5cQRXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A4GFjMM=</latexit>
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Figure 1: Left: The members of a delta represented the lines of a degenerate projective plane. Middle: The

minimum cardinality members of an extended odd hole represented as the edges of an odd hole. Right: The

members of Q6 represented as the triangles of K4.

More generally, clean tangled clutters have been the subject of recent study as they have been instrumental

in the progress made towards various outstanding problems on ideal clutters, ranging from recognizing ideal-

ness [8], the τ = 2 Conjecture [14] and new examples of ideal minimally non-packing clutters [9], idealness of

k-wise intersecting families [5], to the existence of dyadic fractional packings in ideal clutters [3].

Even though their definition is purely combinatorial, clean tangled clutters enjoy fascinating geometric prop-

erties, and in this paper we initiate the study of the geometric attributes of such clutters. We prove three results

that manifest an interplay between the geometry and the combinatorics of such clutters. In particular, full-

dimensional simplices, projective geometries over the two-element field, and an astonishing connection between

them play a central role in this work.

1.1 The core and the setcore of clean tangled clutters

Let C be a clutter over ground set V . The incidence matrix of C, denoted M(C), is the 0 − 1 matrix whose

columns are indexed by the elements and whose rows are indexed by the members. Consider the primal-dual

pair of linear programs

(P )

min 1>x
s.t. M(C)x ≥ 1

x ≥ 0

(D)

max 1>y
s.t. M(C)>y ≤ 1

y ≥ 0.

The incidence vector of any cover of C gives a feasible solution for (P). Thus τ(C) is an upper bound on the

optimal value of (P). A fractional packing of C is any feasible solution y for (D), and its value is 1>y. Its

support, denoted support(y), is the clutter over ground set V whose members are {C ∈ C : yC > 0}. It follows

from Weak LP Duality that every fractional packing has value at most τ(C). In general, this upper bound is far

from being tight. However, what is fascinating about clean clutters is that,

Theorem 1.3 ([11], Theorem 3 and [8], Lemma 1.6). Every clean clutter with covering number at least two has

a fractional packing of value two. In particular, every clean tangled clutter has a fractional packing of value

two.

We may therefore make the following definition:
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Definition 1.4. Let C be a clean tangled clutter. Then the core of C is the clutter

core(C) = {C ∈ C : yC > 0 for some fractional packing y of value two}.

By Theorem 1.3, every clean tangled clutter has a nonempty core. Let us identify the core for two examples

of clean tangled clutters. For the first example, consider the clean tangled clutter Q6. As
(
1
2 ,

1
2 ,

1
2 ,

1
2

)
∈ RQ6

+ is

a fractional packing of value two, it follows that core(Q6) = Q6. For the second example, consider the clutter

Q whose incidence matrix is

M(Q) =



1 2 3 4 5 6 7 8

1
2 1 1 0 0 1 0 1 0
1
2 1 1 0 0 0 1 0 1
1
2 0 0 1 1 1 0 0 1
1
2 0 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 0

0 0 1 1 0 0 1 0 1

0 0 1 1 0 1 0 0 1

0 1 1 0 1 0 1 1 0


.

Q is an ideal minimally non-packing clutter with covering number two [14], implying in turn that it is a clean

tangled clutter [9]. The row labels indicate the unique fractional packing of value two, where uniqueness is a

simple consequence of Complementary Slackness. Subsequently, core(Q) consists of the four members of Q

corresponding to the top four rows of M(Q).

Let C be a clutter over ground set V . Distinct elements u, v are duplicates in C if the corresponding columns

in M(C) are identical. To duplicate an element w of C is to introduce a new element w̄ and replace C by the

clutter over ground set V ∪{w̄}whose members are {C : w /∈ C ∈ C}∪{C∪{w̄} : w ∈ C ∈ C}. A duplication

of C is any clutter obtained from C after duplicating some elements.

Looking back at core(Q), we see that elements 1, 2 are duplicates and elements 3, 4 are duplicates, and that

core(Q) is a duplication of Q6. In fact, the core of any clean tangled clutter is a duplication of a cuboid – let us

elaborate.

Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. The cuboid of S, denoted cuboid(S), is the clutter over ground

set [2n] whose members have incidence vectors {(p1, 1− p1, . . . , pn, 1− pn) : p ∈ S}. In particular, there is a

bijection between the members of cuboid(S) and the points in S. Observe that every cuboid is obtained in this

way. For example, Q6 is the cuboid of the set {000, 110, 101, 011} ⊆ {0, 1}3, represented in Figure 2.

Take a point q ∈ {0, 1}n. To twist S by q is to replace S by S4q := {p4q : p ∈ S}, where the second

4 denotes coordinate-wise addition modulo 2. Take a coordinate i ∈ [n]. Denote by ei the ith unit vector

of appropriate dimension. To twist coordinate i of S is to replace S by S4ei. Two sets S1, S2 are isomorphic,

written as S1
∼= S2, if one is obtained from the other after relabeling and twisting some coordinates. Two distinct

coordinates i, j ∈ [n] are duplicates in S if S ⊆ {x : xi = xj} or S ⊆ {x : xi + xj = 1}. Observe that if two

coordinates are duplicates in a set, then they are duplicates in any isomorphic set. Observe further that S has

duplicated coordinates if, and only if, cuboid(S) has duplicated elements.
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Figure 2: A representation of setcore(Q6) and its convex hull.

Let C be a clean tangled clutter over ground set V . Denote by G(C) the graph over vertex set V whose edges

correspond to the minimum covers of C. It can be readily checked that G(C) is bipartite and every vertex of it

is incident with an edge [11]. The rank of C, denoted rank(C), is the number of connected components of the

bipartite graph G(C). Our first result, below, justifies this choice of terminology.

For example, the reader can verify that G(Q6), G(Q) are the bipartite graphs represented in Figure 3, each

of which has exactly three connected components, so rank(Q6) = rank(Q) = 3.

We are ready to state our first result:

Theorem 1.5 (proved in §2). Let C be a clean tangled clutter of rank r. Then there exists a set S ⊆ {0, 1}r such

that the following statements hold:

(i) core(C) is a duplication of cuboid(S), and up to isomorphism, S is the unique set satisfying this property.

(ii) There is a one-to-one correspondence between the fractional packings of value two in C and the different

ways to express 1
2 · 1 as a convex combination of the points in S.

(iii) conv(S) is a full-dimensional polytope containing 1
2 · 1 in its interior.

Definition 1.6. Let C be a clean tangled clutter of rank r. The setcore of C, denoted setcore(C), is the unique

set S ⊆ {0, 1}r such that core(C) is a duplication of cuboid(S).

An explicit description of the setcore is provided in §2.

For example, we see that setcore(Q6) = setcore(Q) = {000, 110, 101, 011}. Notice further that the convex

hull of {000, 110, 101, 011} is a full-dimensional polytope containing the point ( 1
2 ,

1
2 ,

1
2 ) in its interior. (See

Figure 2.)

1.2 Simplices and projective geometries over the two-element field

The convex hull of the setcore of any clean tangled clutter is a full-dimensional polytope by Theorem 1.5 (iii).

A natural geometric question arises: When is this polytope a simplex? Surprisingly, the answer to this basic

question takes us to binary matroids. (Our terminology follows Oxley [21].)
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Figure 3: Left: A representation of G(Q6). Right: A representation of G(Q).

Let k ≥ 1 be an integer, and letA be the k× (2k−1) matrix whose columns are
{
a ∈ {0, 1}k : a 6= 0

}
. The

binary matroid represented byA is called the rank-k projective geometry overGF (2) and denoted PG(k−1, 2).1

Let n := 2k − 1. The cycle space of PG(k − 1, 2) is

cycle(PG(k − 1, 2)) :=
{
x ∈ {0, 1}n : Ax ≡ 0 (mod 2)

}
.

Observe that the cycle space forms a vector space over GF (2). The cocycle space of PG(k − 1, 2) is

cocycle(PG(k − 1, 2)) :=
{
A>y mod 2 : y ∈ {0, 1}k

}
⊆ {0, 1}n.

Observe that the cocycle space is the orthogonal complement of the cycle space. As the rows of A are linearly

independent over GF (2), the cocycle space has 2k = n + 1 points. In fact, we see in §3 that the n + 1 points

form the vertices of an n-dimensional simplex. Our second result, below, serves as a converse to this statement.

We refer to PG(k − 1, 2), k ≥ 1 simply as projective geometries. Let us look at the first three projective

geometries. For the first one, cocycle(PG(0, 1)) = {0, 1}. As for the second one, notice that PG(1, 2) is

nothing but the graphic matroid of a triangle, and that cocycle(PG(1, 2)) = {000, 110, 101, 011}. The third

one, PG(2, 2), is known as the Fano matroid. See Figure 4 for representations of these three matroids.

We are now ready to state our second result:

Theorem 1.7 ((⇐) proved in §3, (⇒) proved in §4). Let C be a clean tangled clutter. Then conv(setcore(C)) is

a simplex if, and only if, setcore(C) is the cocycle space of a projective geometry.

For instance, as can be seen in Figure 2, the convex hull of setcore(Q6) is a simplex, so according to The-

orem 1.7, setcore(Q6) is the cocycle space of a projective geometry. This is indeed the case as setcore(Q6) =

{000, 110, 101, 011} = cocycle(PG(1, 2)).

1.3 The clutter of the lines of the Fano plane

Consider the clutter over ground set {1, . . . , 7} whose members are

L7 :=
{
{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 5, 6}, {2, 4, 7}, {3, 4, 6}, {3, 5, 7}

}
.

1In the context of binary matroids, rank refers to GF (2)-rank, whereas in the context of clutters, rank refers to R-rank.
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

Figure 4: Representations of PG(0, 2), PG(1, 2) and PG(2, 2), from left to right.
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Figure 5: The Fano plane

Note that the members of L7 correspond to the lines of the Fano plane, as displayed in Figure 5. The members of

L7 may also be viewed as the lines (i.e. triangles) of the Fano matroid. Observe further that L7 is an identically

self-blocking clutter.

As the only minimally non-ideal binary clutter with a member of cardinality three [10], L7 plays a crucial role

in Seymour’s Flowing Conjecture, predicting an excluded minor characterization of ideal binary clutters [24].

Our third result relates to finding L7 as a minor in clean tangled clutters:

Theorem 1.8 (proved in §5). Let C be a clean tangled clutter where conv(setcore(C)) is a simplex. If rank(C) >
3, then C has an L7 minor.

Let us outline a naive approach for proving this theorem. Though unsuccessful, this attempt explains the

intuition behind Theorem 1.8. Let C be a clean tangled clutter where conv(setcore(C)) is a simplex, and

rank(C) > 3. By Theorem 1.7, setcore(C) = cocycle(PG(k − 1, 2)) for some k ≥ 1. As 2k−1 = rank(C) > 3

and rank(C) = 2k−1, we must have that k ≥ 3. From here, the reader can verify that since PG(k−1, 2) has the

Fano matroid as a minor, cuboid(cocycle(PG(k − 1, 2))) has an L7 minor. Consequently, core(C), which is a

duplication of cuboid(setcore(C)) by Theorem 1.5, must have an L7 minor. However, this does not necessarily

imply that C has an L7 minor, because core(C) is only a subset of C, so minors of core(C) do not necessarily

correspond to minors of C. In §5, we see an elaborate, successful attempt for proving Theorem 1.8.

1.4 Outline of the paper

In §2, we prove Theorem 1.5 and provide applications of the theorem used in later sections. In §3, after a primer

on binary matroids, we show how every projective geometry leads to a simplex, and prove Theorem 1.7 (⇐) as

a consequence. In §4, we prove Theorem 1.7 (⇒), and derive an appealing consequence on characterizing sim-
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plices that come from projective geometries. In §5, after laying some ground work, we prove Theorem 1.8, and

then discuss an application to idealness. Finally, in §6, we discuss future directions for research, and conclude

with two conjectures.

2 The core and the setcore of clean tangled clutters

In this section, after presenting some lemmas, we prove Theorem 1.5, and then provide three applications for

clean tangled clutters: the first is a characterization of the core, the second is an explicit description of the setcore

when the rank is small, and the third is an equivalent condition for having a simplicial setcore.

Given a clean tangled clutter C over ground set V , recall thatG(C) denotes the graph over vertex set V whose

edges correspond to the minimum covers of C. We need the following theorem:

Theorem 2.1 ([3]). Let C be a clean tangled clutter. ThenG(C) is a bipartite graph where every vertex is incident

with an edge. Moreover, if G(C) is not connected and {U,U ′} is the bipartition of a connected component, then

C \ U/U ′ is a clean tangled clutter.

2.1 Some lemmas

Let C be a clutter over ground set V . Consider the primal-dual pair of linear programs

(P )

min 1>x
s.t.

∑
v∈C xv ≥ 1 C ∈ C

x ≥ 0

(D)

max 1>y
s.t.

∑
(yC : v ∈ C ∈ C) ≤ 1 v ∈ V

y ≥ 0.

By applying Complementary Slackness to this pair, we get the following:

Remark 2.2. Let C be a clutter, B a minimum cover, and y a fractional packing of value τ(C), if there is any.

Then |C ∩B| = 1 for every C ∈ C such that yC > 0, and
∑

(yC : v ∈ C ∈ C) = 1 for every element v ∈ B.

An explicit description of the setcore. Let C be a clean tangled clutter. Recall that

core(C) = {C ∈ C : yC > 0 for some fractional packing y of value two}.

The following is an immediate consequence of Remark 2.2:

Remark 2.3. Let C be a clean tangled clutter over ground set V . Then every member of core(C) is a transversal

of the minimum covers of C. Moreover, for every fractional packing y of value two and for every element v ∈ V ,∑
(yC : v ∈ C ∈ C) = 1.

LetG := G(C) and r := rank(C). By Theorem 2.1,G is a bipartite graph where every vertex is incident with

an edge, and it has r connected components by definition. For each i ∈ [r], denote by {Ui, Vi} the bipartition of

the ith connected component of G. As an immediate consequence of Remark 2.3,
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Remark 2.4. Let C be a clean tangled clutter of rank r, and for each i ∈ [r], denote by {Ui, Vi} the bipartition

of the ith connected component of G(C). Let C be a member of C. If C ∈ core(C), then C ∩ (Ui∪Vi) ∈ {Ui, Vi}
for each i ∈ [r]. 2

In particular, core(C) is a duplication of a cuboid – let us elaborate. Consider the set S ⊆ {0, 1}r defined as

follows: start with S = ∅, and for each C ∈ core(C), add a point p to S such that

pi = 0 ⇔ C ∩ (Ui ∪ Vi) = Ui ∀i ∈ [r].

By Remark 2.4, the set S is well-defined and core(C) is a duplication of cuboid(S). Thus this must be the

unique set foreseen by Theorem 1.5 (i), and called the setcore of C by Definition 1.6. We call S the setcore of

C with respect to (U1, V1;U2, V2; . . . ;Ur, Vr), and denote it setcore(C : U1, V1;U2, V2; . . . ;Ur, Vr). (Note that

we have not yet proved uniqueness, though we will see a proof shortly.)

Fractional packings vs. convex combinations. The following remark, which is an immediate consequence

of Remark 2.2, sheds light on how the hypercube center point 1
2 · 1 comes into play in Theorem 1.5:

Remark 2.5. Take an integer r ≥ 1, a set S ⊆ {0, 1}r and let C := cuboid(S). Let y ∈ RC+ and define α ∈ RS
+

as follows: for every point p ∈ S and corresponding member C ∈ C, let αp := 1
2 · yC . Then y is a fractional

packing of C of value two if, and only if, 1>α = 1 and
∑

p∈S αp · p = 1
2 · 1. In particular, C has a fractional

packing of value two if, and only if, 1
2 · 1 ∈ conv(S).

Recursive construction of fractional packings. Let C be a clean tangled clutter whereG(C) is not connected,

and let {U,U ′} be the bipartition of a connected component of G(C). Let C′ := C \ U/U ′. Observe that

every member of C disjoint from U contains U ′, implying in turn that C′ = {C − U ′ : C ∈ C, C ∩ U = ∅}.
Observe further that C′ is a clean tangled clutter by Theorem 2.1, so it has a fractional packing of value two by

Theorem 1.3. These observations are used to set up the following lemma:

Lemma 2.6. Let C be a clean tangled clutter, where G(C) is not connected. Let {U,U ′} be the bipartition

of a connected component of G(C), and let z, z′ be fractional packings of C \ U/U ′, C/U \ U ′ of value two,

respectively. Let y, y′ ∈ RC+ be defined as follows:

yC :=

{
zC−U ′ if C ∩ U = ∅
0 otherwise

and y′C :=

{
z′C−U if C ∩ U ′ = ∅
0 otherwise.

Then 1
2y + 1

2y
′ is a fractional packing of C of value two. In particular, core(C \ U/U ′) ⊆ core(C) \ U/U ′.

Proof. We leave this as an exercise for the reader.
2By the end of this section, we shall see that the converse of this remark also holds.
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Duplicated elements of the core. For the next lemma, we need the following remark:

Remark 2.7. The core of any clean tangled clutter has covering number two.

Lemma 2.8. Let C be a clean tangled clutter over ground set V . Then two elements u, v ∈ V are duplicates in

core(C) if, and only if, u, v belong to the same part of the bipartition of a connected component of G(C).

Proof. (⇐) follows Remark 2.4. (⇒) By Remark 2.4, it suffices to show that u, v belong to the same connected

component ofG := G(C). Suppose otherwise. In particular,G is not connected. Let {U,U ′} be the bipartition of

the connected component containing u where u ∈ U ′. Then C \U/U ′ is a clean tangled clutter by Theorem 2.1.

Let w be a neighbour of u in G; so w ∈ U . Then {w, u} is a cover of C. As every member of core(C) containing

u also contains v, it follows that {w, v} is a cover of core(C), implying in turn that core(C) \U/U ′ has {v} as a

cover. However, core(C \ U/U ′) ⊆ core(C)\U/U ′ by Lemma 2.6, so core(C \ U/U ′) has a cover of cardinality

one, a contradiction to Remark 2.7.

2.2 Proof of Theorem 1.5

Let C be a clean tangled clutter over ground set V , let G := G(C), and let r := rank(C). Recall that r is the

number of connected components of G. For each i ∈ [r], let {Ui, Vi} be the bipartition of the ith connected com-

ponent ofG. Let S := setcore(C : U1, V1;U2, V2; . . . ;Ur, Vr). We claim that S satisfies (i)-(iii) of Theorem 1.5,

thereby finishing the proof. It follows from the construction of S that core(C) is a duplication of cuboid(S).

Moreover, by Lemma 2.8, S is the unique set satisfying this property, up to isomorphism. Thus, (i) holds. (ii)

Every fractional packing of value two in C corresponds to a fractional packing of value two in core(C), and every

fractional packing of value two in core(C) corresponds to a fractional packing of value two in cuboid(S). By

Remark 2.5, the fractional packings of value two in cuboid(S) are in correspondence with the different ways to

express 1
2 · 1 as a convex combination of the points in S. These observations prove (ii).

Claim 1. 1
2 · 1 ∈ conv(S).

Proof of Claim. By Theorem 1.3, C and therefore core(C) has a fractional packing of value two, implying that

cuboid(S) has a fractional packing of value two. It therefore follows from Remark 2.5 that 1
2 ·1 can be expressed

as a convex combination of the points in S, thereby proving the claim. ♦

Claim 2. 1
2 · 1±

1
2 · ei ∈ conv(S) for each i ∈ [r].

Proof of Claim. When r = 1, note that Claim 1 implies that S = {0, 1}, so Claim 2 holds. Now assume r ≥ 2.

Let C′ := C \ Ui/Vi. Then C′ is a clean tangled clutter by Theorem 2.1, and core(C′) ⊆ core(C) \ Ui/Vi by

Lemma 2.6. Let z be a fractional packing of C′ of value two. Then by Remark 2.3,∑
(zC′ : v ∈ C ′ ∈ C′) = 1 ∀ v ∈ V − (Ui ∪ Vi).

Define y ∈ RC+ as follows:

yC :=

{
zC−Vi

if C ∩ Ui = ∅
0 otherwise.
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Notice that

1>y = 2∑
(yC : v ∈ C ∈ C) = 1 ∀ v ∈ V − (Ui ∪ Vi)∑
(yC : v ∈ C ∈ C) = 2 ∀ v ∈ Vi∑
(yC : v ∈ C ∈ C) = 0 ∀ v ∈ Ui.

As support(z) ⊆ core(C′) ⊆ core(C) \ Ui/Vi, it follows that support(y) ⊆ core(C). Define α ∈ RS
+ as

follows: for every point p ∈ S and corresponding member C ∈ core(C), let αp := 1
2 · yC . Then the equalities

above show that 1>α = 1 and
∑

p∈S αp · p = 1
2 · 1 + 1

2 · ei. In particular, 1
2 · 1 + 1

2 · ei ∈ conv(S). Repeating

the argument on C/Ui \ Vi yields 1
2 · 1−

1
2 · ei ∈ conv(S), thereby proving the claim. ♦

Claims 1 and 2 together imply that conv(S) is a full-dimensional polytope containing 1
2 · 1 in its interior, so

(iii) holds. This finishes the proof of Theorem 1.5.

2.3 Applications

As the first application of Theorem 1.5, we give the following characterization of the core of a clean tangled

clutter. Note that this result is the converse of Remark 2.4.

Theorem 2.9. Let C be a clean tangled clutter of rank r, and for each i ∈ [r], denote by {Ui, Vi} the bipartition

of the ith connected component of G(C). Then

core(C) = {C ∈ C : C ∩ (Ui ∪ Vi) = Ui or Vi ∀ i ∈ [r]}.

Proof. Denote by C′ the clutter on the right-hand side. Let S := setcore(C : U1, V1; . . . ;Ur, Vr). Let S′ be the

subset of {0, 1}r defined as follows: start with S′ = ∅, and for each C ∈ C′, add a point p to S′ such that

pi = 0 ⇔ C ∩ (Ui ∪ Vi) = Ui ∀ i ∈ [r].

By Remark 2.4,

core(C) ⊆ C′

so S ⊆ S′. We know from Theorem 1.5 (iii) that 1
2 · 1 lies in the interior of conv(S), so 1

2 · 1 lies in the interior

of conv(S′). As a result, for every p ∈ S′, 1
2 · 1 can be written as a convex combination of the points in S′ such

that the coefficient of p is nonzero. That is, by Remark 2.5, for each C ∈ C′, there is a fractional packing of C′

whose support includes C. As every fractional packing of C′ is also a fractional packing of C, it follows that

C′ ⊆ core(C)

thereby finishing the proof of Theorem 2.9.

For the next application, we give an explicit description of the setcore when the rank is small:
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Theorem 2.10. Let C be a clean tangled clutter with rank r. For each i ∈ [r], denote by {Ui, Vi} the bipartition

of the ith connected component of G(C). Then the following statements hold:

(i) If r = 1, then setcore(C) = {0, 1}, and so core(C) = {U1, V1}.

(ii) If r = 2, then setcore(C) = {00, 10, 01, 11}, and so core(C) = {U1 ∪ U2, U1 ∪ V2, V1 ∪ U2, V1 ∪ V2}.

(iii) If r = 3 and C does not have disjoint members, then

setcore(C) = {000, 110, 101, 011} or {100, 010, 001, 111}

and so

core(C) ={U1 ∪ U2 ∪ U3, U1 ∪ V2 ∪ V3, V1 ∪ U2 ∪ V3, V1 ∪ V2 ∪ U3}

or {U1 ∪ U2 ∪ V3, U1 ∪ V2 ∪ U3, V1 ∪ U2 ∪ U3, V1 ∪ V2 ∪ V3}

Proof. Let S := setcore(C) ⊆ {0, 1}r. By Theorem 1.5 (iii), 1
2 · 1 lies in the interior of conv(S). This

immediately (i) and (ii). If C does not have disjoint members, then neither does core(C), implying that S does

not have antipodal points. These two facts imply (iii).

Finally, Theorem 1.5 allows us to restate the assumption that the setcore of a clean tangled clutter has a

simplicial convex hull. This restatement is crucial for the proof of Theorem 1.7.

Theorem 2.11. Let C be a clean tangled clutter. Then conv(setcore(C)) is a simplex if, and only if, C has a

unique fractional packing of value two.

Proof. Let S := setcore(C). Theorem 1.5 (ii) states that there is a one-to-one correspondence between the

fractional packings of value two in C and the different ways to describe 1
2 · 1 as a convex combination of the

points in S. As a consequence, C has a unique fractional packing of value two if, and only if, 1
2 ·1 can be written

as a unique combination of the points in S. Since 1
2 · 1 lies in the interior of conv(S) by Theorem 1.5 (iii), the

theorem follows.

3 From projective geometries to simplices

In this section, we show that the cocycle space of every projective geometry forms a simplex, and then prove

Theorem 1.7 (⇐) as an immediate consequence.

3.1 A primer on binary spaces and binary matroids

Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. We say that S is an affine vector space over GF (2), or simply an

affine binary space, if a4b4c ∈ S for all points a, b, c ∈ S. If S contains 0, then S is called a binary space.

Binary spaces enjoy the following transitive property:
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Remark 3.1. S = S4a for every binary space S and every point a ∈ S.

Suppose S is a binary space. By Basic Linear Algebra, there is a 0 − 1 matrix A with n columns such that

S = {x : Ax ≡ 0 (mod 2)}. LetM be the binary matroid over ground set EM := [n] that is represented by A.

The cycle space of M is the set cycle(M) := S and the cocycle space of M , denoted cocycle(M) ⊆ {0, 1}n,

is the row space of A over GF (2). Notice that cycle(M) , cocycle(M) are binary spaces that are orthogonal

complements. Observe that the binary matroid M can be fully determined by either A, its cycle space or its

cocycle space.

A cycle of M is a subset C ⊆ EM such that χC ∈ cycle(M), and a cocycle of M is a subset D ⊆ EM such

that χD ∈ cocycle(M). In particular, ∅ is both a cycle and a cocycle. Notice that every cycle and every cocycle

have an even number of elements in common. A circuit of M is a nonempty cycle that does not contain another

nonempty cycle, and a cocircuit of M is a nonempty cocycle that does not contain another nonempty cocycle.

It is well-known that every cycle is either empty or the disjoint union of some circuits, and that every cocycle

is either empty or the disjoint union of some cocircuits [21]. Observe that the cycles, circuits, cocycles, and

cocircuits of M correspond respectively to the cocycles, cocircuits, cycles, and circuits of the dual matroid M?.

An element e ∈ EM is a loop of M if {e} is a circuit, and it is a coloop of M if {e} is a cocircuit. Two

distinct elements e, f ∈ EM are parallel in M if {e, f} is a circuit. M is a simple binary matroid if it has no

loops and no parallel elements, i.e. if every circuit has cardinality at least three. A triangle in M is a circuit of

cardinality three.

Remark 3.2. Take an integer n ≥ 1 and a binary space S ⊆ {0, 1}n, and let M be the binary matroid whose

cycle space is S. Then the points in S do not agree on a coordinate if, and only if, M has no coloops. Moreover,

if the points in S do not agree on a coordinate, then |S ∩ {x : xi = 0}| = |S ∩ {x : xi = 1}| for all i ∈ [n].

3.2 Proof of Theorem 1.7 (⇐)

Take an integer k ≥ 1, and let A be the k × (2k − 1) matrix whose columns are all the distinct 0 − 1

vectors of dimension k that are nonzero. Recall that PG(k − 1, 2) is the binary matroid represented by A,

cycle(PG(k − 1, 2)) = {x : Ax ≡ 0 (mod 2)} and cocycle(PG(k − 1, 2)) is the row space of A generated

over GF (2). Recall further that |cocycle(PG(k − 1, 2)) | = 2k. As A has no zero column, and no two columns

of it are equal, PG(k − 1, 2) is a simple binary matroid. In particular, the points in cocycle(PG(k − 1, 2)) do

not agree on a coordinate by Remark 3.2.

Proposition 3.3. Take an integer k ≥ 2. Then the following statements hold for PG(k − 1, 2):

(i) every nonempty cocycle has cardinality 2k−1,

(ii) every two elements appear together in a triangle,

(iii) every cycle is the symmetric difference of some triangles.
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Proof. (i) Let D be a nonempty cocycle. Then χD is nonzero and belongs to cocycle(PG(k − 1, 2)). Let

A′ be a k × (2k − 1) matrix with 0 − 1 entries whose first row is χD and whose rows form a basis for

cocycle(PG(k − 1, 2)) over GF (2). Notice that the orthogonal complement of cocycle(PG(k − 1, 2)) over

GF (2) is equal to

cycle(PG(k − 1, 2)) = {x : A′x ≡ 0 (mod 2)}.

As PG(k − 1, 2) is a simple binary matroid, it follows that A′ has no zero column, and no two columns of it

are equal. As A′ has 2k − 1 columns and k rows, it follows that the columns of A′ are all the 0 − 1 vectors of

dimension k that are nonzero. In particular, every row of A′ has 2k−1 ones and 2k−1 − 1 zeros. In particular,

|D| = 2k−1.

(ii) Let A be the k× (2k− 1) matrix representation of PG(k− 1, 2) whose columns are all the 0− 1 vectors

of dimension k that are nonzero. Pick distinct elements e, f of PG(k − 1, 2), and let a, b be the corresponding

columns of A. Notice that a + b (mod 2) is another column of A, and let g be the corresponding element of

PG(k − 1, 2). Then {e, f, g} is the desired triangle of PG(k − 1, 2).

(iii) Let C be a nonempty cycle. We proceed by induction on |C| ≥ 3. The base |C| = 3 holds trivially.

For the induction step assume that |C| ≥ 4. Pick distinct elements e, f ∈ C. By (ii) there is an element g such

that {e, f, g} is a triangle. Since C4{e, f, g} is a cycle of smaller cardinality than C, the induction hypothesis

applies and tell us that C4{e, f, g} is the symmetric difference of some triangles, implying in turn that C is the

symmetric difference of some triangles, thereby completing the induction step.

We are now ready to present the key result of this subsection:

Theorem 3.4. Take an integer k ≥ 1 and let S := cocycle(PG(k − 1, 2)). Then conv(S) is a full-dimensional

simplex containing 1
2 · 1 in its interior. In particular, 1

2k−1 · 1 is the unique fractional packing of cuboid(S) of

value two.

Proof. Let n := 2k − 1. We know that S is a subset of {0, 1}n and has exactly n + 1 points. It follows from

Proposition 3.3 (i) that the inequality
n∑

i=1

xi ≤
n+ 1

2

is valid for conv(S), and that every point in S except for 0 satisfies this inequality at equality. As S is a binary

space, S4p = S for every point p ∈ S by Remark 3.1. This transitive property implies that for each p ∈ S, the

transformed inequality ∑
i:pi=0

xi +
∑

j:pj=1

(1− xj) ≤
n+ 1

2

is also valid for conv(S), and every point in S except for p satisfies this inequality at equality. Hence, conv(S)

is an n-dimensional simplex whose n+ 1 facets are as described above.

As the point 1
2 · 1 satisfies every inequality strictly, it lies in the interior of conv(S). In fact, as S is a binary

space whose points do not agree on a coordinate, |S ∩ {x : xi = 0}| = |S ∩ {x : xi = 1}| for each i ∈ [n]
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by Remark 3.2, so ∑
p∈S

1

n+ 1
· p =

1

2
· 1.

As conv(S) is a simplex, it follows from Remark 2.5 that 2
n+1 · 1 = 1

2k−1 · 1 is the unique fractional packing of

cuboid(S) of value two, thereby finishing the proof of Theorem 3.4.

As a consequence,

Proof of Theorem 1.7 (⇐). Let C be a clean tangled clutter. If setcore(C) is the cocycle space of a projective

geometry, then Theorem 3.4 implies that conv(setcore(C)) is a simplex, as required.

4 From simplices to projective geometries

In this section, after presenting a lemma on constructing projective geometries, we prove Theorem 1.7 (⇒), and

then present an appealing consequence characterizing when a simplex comes from a projective geometry.

We start with the following key lemma allowing for an inductive argument:

Lemma 4.1. Let C be a clean tangled clutter with a unique fractional packing of value two. Suppose G(C) is

not connected, and let {U,U ′} be the bipartition of some connected component of G(C). Then C \ U/U ′ is a

clean tangled clutter with a unique fractional packing of value two. Moreover, if y, z are the fractional packings

of C, C \ U/U ′ of value two, respectively, then support(z) = support(y) \ U/U ′.

Proof. By Theorem 2.1, C \ U/U ′ and C/U \ U ′ are clean tangled clutters, so we may apply Theorem 1.3 and

conclude that they have fractional packings z, z′ of value two, respectively. Let t, t′ ∈ RC+ be defined as follows:

tC :=

{
zC−U ′ if C ∩ U = ∅
0 otherwise

and t′C :=

{
z′C−U if C ∩ U ′ = ∅
0 otherwise.

By Lemma 2.6, 1
2 t + 1

2 t
′ is a fractional packing of C of value two. It therefore follows from the uniqueness

assumption that 1
2 t+ 1

2 t
′ = y. Subsequently, z must be the unique fractional packing of C \ U/U ′ of value two,

z′ must be the unique fractional packing of C/U \ U ′ of value two, and

support(z) = support(y) \ U/U ′

support(z′) = support(y)/U \ U ′,

as desired.

4.1 Constructing projective geometries

For an integer r ≥ 1 and a set S ⊆ {0, 1}r, the incidence matrix of S is the matrix whose rows are the points

in S. Denote by J the all-ones matrix of appropriate dimensions. Take an integer k ≥ 1 and let A be the

incidence matrix of cocycle(PG(k − 1, 2)). Then every column of A has 2k−1 ones and 2k−1 zeros. In fact, A

has the following recursive description:
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Remark 4.2. Take an integer k ≥ 2. If A′ is the incidence matrix of cocycle(PG(k − 2, 2)), then up to

permuting rows and columns, (
1 A′ J −A′
0 A′ A′

)
is the incidence matrix of cocycle(PG(k − 1, 2)). Moreover, every element of PG(k − 1, 2) can be used as the

left-most column in the incidence matrix above.

Consequently, for every pair a, b of columns of A,

|{j : aj = bj = 0}| = |{j : aj = bj = 1}| = |{j : aj = 1, bj = 0}| = |{j : aj = 0, bj = 1}| = 2k−2.

Two columns of a 0 − 1 matrix are complementary if they add up to the all-ones vector. If C is the cuboid of

cocycle(PG(k − 1, 2)), then every column of M(C) has 2k−1 ones, and by the expressions above, every pair of

columns of M(C) are either complementary or have exactly 2k−2 ones in common.

Remark 4.3. Take an integer k ≥ 2, and let C := cuboid(cocycle(PG(k − 1, 2))). Then for every minimum

cover {u, v} of C, the minor C \ u/v is obtained from cuboid(cocycle(PG(k − 2, 2))) after duplicating every

element once.

This remark is an immediate consequence of Remark 4.2, and is helpful to keep in mind when parsing the

hypotheses of the following lemma, which is the main result of this section:

Lemma 4.4. Take an integer r ≥ 2 and a clutter C whose ground set V is partitioned into nonempty parts

U1, V1, . . . , Ur, Vr such that

• the elements in each part are duplicates,

• for each i ∈ [r], if u ∈ Ui and v ∈ Vi, then {u, v} is a transversal of C, and

• for each i ∈ [r], C \ Ui/Vi (resp. C/Ui \ Vi) is a duplication of the cuboid of the cocycle space of a

projective geometry.

Assume further that C has exactly r+ 1 members and a unique fractional packing of value two. Then there is an

integer k ≥ 2 such that r = 2k − 1 and C is a duplication of cuboid(cocycle(PG(k − 1, 2))).

Proof. We may assume after contracting some duplicate elements that Ui = {ui} and Vi = {vi} for each i ∈ [r].

In particular, C is a cuboid. As C has a fractional packing of value two, it follows that τ(C) ≥ 2, so C is a tangled

clutter. For each i ∈ [r], let f(ui) := vi and f(vi) := ui.

Claim 1. C does not have duplicated elements. In particular, if {u, v} is a transversal of C, then v = f(u).

Proof of Claim. Suppose for a contradiction that u, u′ are duplicates. Since τ(C) = 2, {u, u′} is not a cover, so

u′ 6= f(u). But then C \ f(u)/u has {u′} as a cover, a contradiction as C \ f(u)/u is a duplication of the cuboid

of the cocycle space of a projective geometry. ♦
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In what follows the reader should keep in mind that our labeling of the columns of M(C) induces a labeling

for the columns of M(C \ f(u)/u), for each u ∈ V . In particular, M(C \ f(u)/u) and M(C/f(u) \ u) have the

same column labels, for each u ∈ V .

Claim 2. There is an integer k ≥ 2 such that the following statements hold:

(1) for each u ∈ V , C \ f(u)/u is a duplication of cuboid(cocycle(PG(k − 2, 2))),

(2) |C| = 2k,

(3) every column of M(C) has exactly 2k−1 ones,

(4) every pair of columns of M(C) are either complementary or have exactly 2k−2 ones in common.

Proof of Claim. For each u ∈ V , C \ f(u)/u is a duplication of cuboid(cocycle(PG(ku − 2, 2))) for some

integer ku ≥ 2. In particular, every column u of M(C) has exactly 2ku−1 = |cocycle(PG(ku − 2, 2)) | ones.

Notice now that if u ∈ V and w ∈ V − {u, f(u)}, then the number of ones in column w of M(C) is equal

to the sum of the number of ones in column w of M(C \ f(u)/u) and the number of ones in column w of

M(C/f(u) \ u), so

2kw−1 = 2ku−2 + 2kf(u)−2

implying in turn that kw = ku = kf(u). As a result, (ku : u ∈ V ) are all equal to k for some integer k ≥ 2. It

can be readily checked that (1)-(4) hold for k, as required. ♦

Following up on Claim 2 (4), if a pair of columns of M(C) are complementary, then by Claim 1, the column

labels must be u, f(u) for some u ∈ V .

Claim 3. 1
2k−1 · 1 ∈ RC is the unique fractional packing of C of value two.

Proof of Claim. This follows from Claim 2 (2)-(3) and our assumption that C has a unique fractional packing of

value two. ♦

Claim 4. The following statements hold for every u ∈ V :

(1) a pair of identical columns in the matrix M(C \ f(u)/u) correspond to a complementary pair of columns

in the matrix M(C/f(u) \ u),

(2) M(C \ f(u)/u) does not have three identical columns,

(3) r = 2k − 1, and

(4) C\f(u)/u is obtained from cuboid(cocycle(PG(k − 2, 2))) after duplicating every element exactly once.

18



Proof of Claim. (1) follows from Claim 2 (4). (2) follows from (1). (3) follows from Claim 2 (2) and our

assumption that |C| = r + 1. (4) Claim 2 (1), together with part (2) of this claim, implies that the minor

C \ f(u)/u is obtained from cuboid(cocycle(PG(k − 2, 2))) after duplicating every element at most once. In

particular,

2r = |V | ≤ 2 + 2 · 2 · (2k−1 − 1) = 2 · (2k − 1).

However, r = 2k − 1 by part (3) of this claim, so equality must hold throughout the above inequalities, thereby

proving (4). ♦

Pick S ⊆ {0, 1}r containing 0 such that C = cuboid(S). We prove that S = cocycle(PG(k − 1, 2)).

Denote by A the incidence matrix of S. Notice that A is a column submatrix of M(C), and the column labels of

A form a subset of V and a transversal of {{u, f(u)} : u ∈ V }.

Claim 5. In A the sum of every two columns modulo 2 is equal to another column.

Proof of Claim. Pick two columns of A with column labels u,w ∈ V . By Claim 4 (4), in M(C \ f(u)/u),

column w is identical to another column v. Notice that v ∈ V − {u, f(u), w, f(w)}. By Claim 4 (1), in

M(C/f(u) \ u), columns w, v are complementary. Thus, in M(C), columns u,w, v add up to 1 modulo 2,

implying in turn that columns u,w, f(v) add up to 0 modulo 2. We know that columns u,w of M(C) are also

present in A, and that exactly one of the columns v, f(v) of M(C) is present in A. As 0 ∈ S, A has a zero row,

so no three of its columns can add up to 1 modulo 2, implying in turn that f(v) must be a column of A instead

of v. As a result, in A, columns u,w add up to column f(v) modulo 2, as required. ♦

We next use Remark 4.2 to argue that up to permuting rows and columns, A is the incidence matrix of

cocycle(PG(k − 1, 2)). To this end, denote by v0 ∈ V the label of the first column of A. For j ∈ {0, 1},
denote by Ij the rows of A corresponding to {x ∈ S : xv0 = j}. By Claim 2 (3), |I0| = |I1| = 2k−1. Notice

that r−1
2 = 2k−1 − 1 by Claim 4 (3). Label the columns of A other than v0 as v1, u1, v2, u2, . . . , v r−1

2
, u r−1

2

where for each i ∈
[
r−1
2

]
, the sum of columns v0 and vi modulo 2 is equal to column ui – such a labeling exists

because of Claim 5. Define matrices A1, A2, A3, A4:

• A1 is the I1 × {v1, . . . , v r−1
2
} submatrix of A,

• A2 is the I1 × {u1, . . . , u r−1
2
} submatrix of A,

• A3 is the I0 × {v1, . . . , v r−1
2
} submatrix of A,

• A4 is the I0 × {u1, . . . , u r−1
2
} submatrix of A.

Then A3 = A4 and A1 +A2 = J . After swapping the labels vi and ui, i ∈
[
r−1
2

]
, if necessary, we may assume

that A1 has a zero row. Notice further that as 0 ∈ S and A3 = A4, the matrix A3 also has a zero row. As a

result, by Claim 4 (4), up to permuting rows and columns, the following three matrices are equal: A1, A3, and

the incidence matrix of cocycle(PG(k − 2, 2)).
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For the rest of the proof, we work with the projective geometry PG(k− 2, 2) whose labeling agrees with the

column labels of A3, that is, the cocycles of the labeled PG(k − 2, 2) are the rows of A3.

Claim 6. Up to permuting rows, A1 and A3 are equal.

Proof of Claim. This is obviously true if k = 2. We may therefore assume that k ≥ 3. It suffices to show that

every row of A1 is equal to some row of A3, because the two matrices are already equal up to permuting rows

and columns. Pick a row χD of A1 for some D ⊆ {v1, . . . , v r−1
2
}. We need to show that D is a cocycle of (the

labeled) PG(k − 2, 2). Pick a triangle {vi, vj , vk} of PG(k − 2, 2), that is, the corresponding columns of A3

add up to zero modulo 2. Consider now the columns vi, vj of A. By Claim 5, the sum of these two columns

modulo 2 is another column of A. This column is either vk or uk, and in fact since A1 has a zero row, it must be

vk. As a result, columns vi, vj , vk of A1 also add up to zero modulo 2, implying in turn that |D ∩ {vi, vj , vk}|
is even. Thus, D intersects every triangle of PG(k − 2, 2) an even number of times, so by Proposition 3.3 (iii),

D intersects every cycle of PG(k − 2, 2) an even number of times, implying in turn that D is a cocycle of

PG(k − 2, 2), as required. ♦

We may therefore assume that A1 = A3, implying in turn that A1 = A3 = A4 and A2 = J − A1. As A1

is the incidence matrix of cocycle(PG(k − 2, 2)), it follows from Remark 4.2 that A is the incidence matrix of

cocycle(PG(k − 1, 2)), so S = cocycle(PG(k − 1, 2)). As C = cuboid(S), and as r = 2k − 1 by Claim 4 (3),

we have finished the proof of Lemma 4.4.

It is worth pointing out that the assumption |C| = r + 1 in Lemma 4.4 can be removed without affecting the

conclusion, but this comes at the expense of a much longer proof of Claim 4, parts (3) and (4), one that requires

the notion of binary clutters.

4.2 Proof of Theorem 1.7 (⇒)

Let C be a clean tangled clutter over ground set V whose setcore has a simplicial convex hull. By Theorem 2.11,

C has a unique fractional packing y of value two. We shall prove by induction on |V | ≥ 2 that

(?) there is an integer k ≥ 1 such that y is 1
2k−1 -integral, rank(C) = 2k − 1 and support(y) is a

duplication of cuboid(cocycle(PG(k − 1, 2))).

For the base case |V | = 2, as C is tangled, it must consist of two members of size one each, so (?) holds for

k = 1. For the induction step, assume that |V | ≥ 3. Let r := rank(C) and S := setcore(C) ⊆ {0, 1}r. By

Theorem 1.5 (iii) and our assumption, conv(S) is a full-dimensional simplex, implying in turn that |S| = r+ 1.

Let G := G(C), and for each i ∈ [r], let {Ui, Vi} be the bipartition of the ith connected component of G. As

support(y) ⊆ core(C), Remark 2.4 implies Claim 1 below:

Claim 1. For each C ∈ support(y) and i ∈ [r], C ∩ (Ui ∪ Vi) is either Ui or Vi.

Claim 2. If r = 1, then (?) holds for k = 1.
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Proof of Claim. Assume that r = 1. Then support(y) ⊆ {U1, V1} by Claim 1, and as support(y) contains a

fractional packing of C of value two, we must have that support(y) = {U1, V1}, and the claim follows. ♦

We may therefore assume that r ≥ 2.

Claim 3. The following statements hold:

(1) |support(y)| = r + 1,

(2) support(y) has a unique fractional packing of value two,

(3) the elements in each of U1, V1, . . . , Ur, Vr are duplicates in support(y),

(4) for each i ∈ [r], if u ∈ Ui and v ∈ Vi, then {u, v} is a transversal of support(y), and

(5) for each i ∈ [r], support(y)\Ui/Vi (resp. support(y)/Ui \Vi) is a duplication of the cuboid of the cocycle

space of a projective geometry.

Proof of Claim. (1) Since y is the unique fractional packing of C of value two, we have core(C) = support(y).

Subsequently, |support(y)| = |core(C) | = |S| = r+ 1. (2) is obvious, and (3) and (4) follow from Claim 1. (5)

By Lemma 4.1, the minor C \ Ui/Vi is a clean tangled clutter with a unique fractional packing z of value two,

and support(z) = support(y) \Ui/Vi. Our induction hypothesis applied to C \Ui/Vi implies that support(z),

which is equal to support(y)\Ui/Vi, is a duplication of the cuboid of the cocycle space of a projective geometry,

as required. ♦

We may therefore apply Lemma 4.4 to support(y) to conclude that for some integer k ≥ 2, r = 2k − 1

and support(y) is a duplication of cuboid(cocycle(PG(k − 1, 2))). It follows from Theorem 3.4 that y assigns
1

2k−1 to the members of support(y), so (?) holds. This completes the induction step.

We have shown that (?) holds. As a consequence, core(C) = support(y) is a duplication of the cuboid of

cocycle(PG(k − 1, 2)) ⊆ {0, 1}r. The uniqueness of the setcore (Theorem 1.5 (i)) implies that setcore(C) =

cocycle(PG(k − 1, 2)), thereby finishing the proof of Theorem 1.7 (⇒).

4.3 Binary clutters and an application

A clutter C is binary if the symmetric difference of any three members contains a member [19]. Observe that

if a clutter is binary, then so is every duplication of it. It is known that C is a binary clutter if, and only if,

|C ∩B| ≡ 1 (mod 2) for all C ∈ C, B ∈ b(C) [19]. In particular, a clutter is binary if and only if its blocker is

binary. Observe that the deltas, extended odd holes and their blockers are not binary. If a clutter is binary, so is

every minor of it [23]. Subsequently,

Remark 4.5. Every binary clutter is clean.
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Examples include the clutter of minimal T -joins of a graft, and the clutter of odd circuits of a signed graph

(the ground set in each case is the edge set of the underlying graph) [13]. Another class of binary clutters comes

from affine binary spaces.

Remark 4.6. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. Then S is an affine binary space if, and only if,

cuboid(S) is a binary clutter.

We are now ready to prove the following appealing consequence of Theorem 1.7:

Theorem 4.7. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n whose convex hull is a simplex containing 1
2 · 1 in

its relative interior. Then exactly one of the following statements holds:

• cuboid(S) has a delta or the blocker of an extended odd hole minor, or

• S is a duplication of the cocycle space of a projective geometry over the two-element field.

Proof. Let C := cuboid(S). If S is a duplication of the cocycle space of a projective geometry, then up

to twisting, S is a binary space, so C is a binary clutter by Remark 4.6, implying in turn that it is clean by

Remark 4.5. Conversely, assume that C is clean. As conv(S) is a simplex containing 1
2 · 1 in its relative interior,

• the points in S do not all agree on a coordinate, so C is tangled, and

• by Remark 2.5 on the connection between conv(S) and fractional packings of C, C must have a unique

fractional packing of value two, one whose support is C.

In particular, C = core(C), so S is a duplication of setcore(C). As conv(S) is a simplex, so is conv(setcore(C)),

so by Theorem 1.7, setcore(C) is isomorphic to the cocycle space of a projective geometry, implying in turn that

S is a duplication of the cocycle space of a projective geometry, as required.

5 Finding the Fano plane as a minor

In this section, after presenting a few ingredients, we prove Theorem 1.8, and then prove a consequence of the

result.

5.1 Monochromatic covers in clean tangled clutters

Let C be a clean tangled clutter. A cover is monochromatic if it is monochromatic in some (proper) bicoloring

of the bipartite graph G(C). In this subsection, we prove a lemma on monochromatic minimal covers in clean

tangled clutters. We need the following result from Mathematical Logic:
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Proposition 5.1 ([22]). Take an integer r ≥ 1 and a set S ⊆ {0, 1}r. Pick disjoint subsets I, J ⊆ [r] and

disjoint subsets I ′, J ′ ⊆ [r] such that the following inequalities are valid S:∑
i∈I

xi +
∑
j∈J

(1− xj) ≥ 1

∑
i∈I′

xi +
∑
j∈J′

(1− xj) ≥ 1

If k ∈ I ∩ J ′, then the following inequality is also valid for S:∑
i∈(I∪I′)−{k}

xi +
∑

j∈(J∪J′)−{k}
(1− xj) ≥ 1.

Proof. We leave the proof as an exercise for the reader.

Proposition 5.1 is known as the Resolution Principle and the derived inequality is referred to as the resolvent

of the other two inequalities. We use this remark to prove the following, a key ingredient needed for the proof of

Theorem 1.8.

Theorem 5.2. Let C be a clean tangled clutter over ground set V of rank r, and for each i ∈ [r], denote by

{Ui, Vi} the bipartition of the ith connected component of G := G(C). Suppose for some integer k ∈ [r] that

V1 ∪ · · · ∪ Vk is a cover of C. Then k ≥ 3. Moreover, if k = 3, then V1 ∪ V2 ∪ V3 contains a minimal cover of

cardinality three picking exactly one element from each Vi, i ∈ [3].

Proof. Let S := setcore(C : U1, V1;U2, V2; . . . ;Ur, Vr). Since V1 ∪ · · · ∪ Vk is a cover of C, it is also a cover

of core(C), so every member of core(C) contains at least one of V1, . . . , Vk, by Remark 2.4. In particular, the

inequality x1 + · · ·+ xk ≥ 1 is valid for conv(S). As 1
2 · 1 lies in the interior of conv(S) by Theorem 1.5 (iii),

it follows that k ≥ 3.

Assume that k = 3. Let B be a minimum cardinality cover contained in V1 ∪ V2 ∪ V3. What we just showed

implies that B ∩ Vi 6= ∅ for i ∈ [3]. We claim that |B ∩ Vi| = 1 for each i ∈ [3], thereby finishing the proof.

Suppose otherwise. We may assume that |B ∩ V3| ≥ 2. Let I := B − V3, J := V − (I ∪ U3 ∪ V3), and

C′ := C \ I/J . Note that C′ is a clean clutter and has ground set U3 ∪ V3. Notice further that every edge of

G[U3 ∪ V3] gives a cardinality-two cover of C′.

Case 1: τ(C′) = 2. In this case, C′ is a tangled clutter where G[U3 ∪ V3] ⊆ G(C′). In particular, G(C′) is a

connected bipartite graph whose bipartition inevitably is {U3, V3}. Thus, rank(C′) = 1, so core(C′) =

{U3, V3} by Theorem 2.10 (i). However, as B is a cover of C, B − I = B ∩ V3 is a cover of C′, a

contradiction as B ∩ V3 is disjoint from U3 ∈ core(C′) ⊆ C′.

Case 2: τ(C′) ≤ 1. That is, there is a minimal cover D of C such that D ∩ J = ∅ and |D − I| ≤ 1. As

D ∩ I ⊆ I = B − V3 ( B, and B is a minimal cover of C, it follows that D ∩ I is not a cover of C, so

D − I 6= ∅. Thus, |D − I| = 1. Let u be the element in D − I ⊆ U3 ∪ V3.
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Case 2.1: u ∈ U3. In this case, V1∪V2∪U3 is a cover of C, implying that the inequality x1+x2+(1−x3) ≥ 1

is valid for S. However, V1 ∪ V2 ∪ V3 is also a cover of C, so x1 + x2 + x3 ≥ 1 is valid for S, too.

By applying the Resolution Principle, Proposition 5.1, we get that x1 + x2 ≥ 1 is also valid for S.

However, 1
2 · 1 lies in the interior of conv(S) by Theorem 1.5 (iii), a contradiction.

Case 2.2: u ∈ V3. In this case,

|D| = |D ∩ I|+ |D − I| = |B − V3|+ 1 < |B − V3|+ |B ∩ V3| = |B|,

where the strict inequality follows from our contrary assumption that |B ∩ V3| ≥ 2. However,

|D| < |B| contradicts our minimal choice ofB as the minimum cover of C contained in V1∪V2∪V3.

We obtained a contradiction in each case, as desired.

5.2 A lemma for finding an L7 minor

Recall that

L7 = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 5, 6}, {2, 4, 7}, {3, 4, 6}, {3, 5, 7}}

and b(L7) = L7. This clutter enjoys a lot of symmetries. L7 has an automorphism mapping every element

to every other element, and an automorphism mapping every member to every other member. These facts are

crucial throughout this subsection.

Remark 5.3. LetG = (V,E) be a connected, bipartite graph with bipartition {U,U ′}whereU,U ′ 6= ∅. Assume

that there exists a subset X ⊆ U ′ such that 2 ≤ |X| ≤ 3, and there is no proper vertex-induced subgraph that is

connected and contains X . Then G is a tree whose leaves are in X .

Proof. By our minimality assumption, every vertex in V −X is a cut-vertex ofG separating at least two vertices

in X . We claim that G is a tree. Suppose otherwise. Then there is a circuit C ⊆ V . For every vertex v ∈ C,

there is a vertex g(v) ∈ X such that

• if v ∈ X , then g(v) = v,

• otherwise, g(v) is a vertex of X such that every path between it and C − {v} includes v.

Notice that if v, v′ are distinct vertices of C, then g(v) 6= g(v′). In particular, |X| ≥ |C|, implying in turn that

|C| = 3, a contradiction as G is bipartite. Thus G is a tree. It is immediate from our minimality assumption that

every leaf of G belongs to X .

We are now ready to prove the following lemma, the workhorse for the proof of Theorem 1.8:

Lemma 5.4. Let C be a clean tangled clutter, where the following statements hold:

(a) C has rank 7, and for each i ∈ [7], the ith connected component of G(C) has bipartition {Ui, Vi}.
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(b) For each L ∈ L7,
⋃

i/∈L Ui ∪
⋃

j∈L Vj contains a member of C.

(c) For all L ∈ L7 but at most one,
⋃

j∈L Vj is a cover of C.

Then C has an L7 minor.

(In (b),
⋃

i/∈L Ui ∪
⋃

j∈L Vj for each L ∈ L7 must in fact be a member by Remark 2.4; but the proof is easier to

read given the current version of (b).)

Proof. Let G := G(C).

Claim 1. Take a subset L ⊆ [7] such that |L| ≤ 3 and
⋃

i∈L Vi is a cover. Then L ∈ L7. Moreover,
⋃

i∈L Vi

contains a minimal cover of cardinality three picking one element from each Vi, i ∈ L.

Proof of Claim. As (b) holds,
⋃

i∈L Vi intersects each
⋃

i/∈L Ui ∪
⋃

j∈L Vj , L ∈ L7, implying in turn that L is a

cover of L7. As b(L7) = L7 and |L| ≤ 3, it follows that L ∈ L7. The second part follows from Theorem 5.2. ♦

Claim 2. For each L ∈ L7,
⋃

i∈L Vi is a cover.

Proof of Claim. We may assume because of (c) that for each L ∈ L7 −{{3, 5, 7}},
⋃

i∈L Vi contains a minimal

cover BL; we may assume by Claim 1 that BL has cardinality three and picks one element from each Vi, i ∈ L.

It remains to prove that V3 ∪ V5 ∪ V7 is a cover. Suppose otherwise. Let C′ := C \ (V5 ∪ V7)/(U5 ∪ U7).

Assume in the first case that τ(C′) ≤ 1. That is, there is a minimal coverD ∈ b(C) such thatD∩(U5∪U7) =

∅ and |D − (V5 ∪ V7)| ≤ 1. It follows from Claim 1 that D − (V5 ∪ V7) = {u} for some u ∈ V3 ∪ U1 ∪ U2 ∪
U3 ∪ U4 ∪ U6. Our contrary assumption tells us that u /∈ V3. But then D is disjoint from one of⋃

i/∈L
Ui ∪

⋃
j∈L

Vj , L = {1, 2, 3}, {3, 4, 6},

a contradiction to (b).

Assume in the remaining case that τ(C′) ≥ 2. Then C′ is clean tangled, and G′ := G(C′) has G \ (U5 ∪V5 ∪
U7 ∪ V7) as a subgraph. Then G′ is a bipartite graph where for each i ∈ {1, 2, 3, 4, 6}, G′[Ui ∪ Vi] is connected

and has bipartition {Ui, Vi}. Observe that for L = {1, 4, 5}, {2, 4, 7}, {2, 5, 6}, {1, 6, 7}, the set BL− (V5∪V7)

is a cardinality-two cover, and therefore a minimum cover, of C′. As a consequence, G′ has an edge between

V1, V4, an edge between V4, V2, an edge between V2, V6, and an edge between V6, V1. Let U := U1∪U2∪V4∪V6
and U ′ := V1 ∪ V2 ∪ U4 ∪ U6. Then G′[U ∪ U ′] is connected and has bipartition {U,U ′}. Since G′[U3 ∪ V3] is

also connected, G′ has at most two connected components. It therefore follows from Theorem 2.10 (i)-(ii) that

either

U ∪ U3, U
′ ∪ V3 ∈ C′ or U ∪ V3, U ′ ∪ U3 ∈ C′.

Observe thatBL−(V5∪V7) = BL is a cover of C′ for L = {1, 2, 3}, {3, 4, 6}. However,B{1,2,3}∩(U∪U3) = ∅
and B{3,4,6} ∩ (U ′ ∪ U3) = ∅, a contradiction.

As a result, V3 ∪ V5 ∪ V7 is a cover, as claimed. ♦
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We may assume that C is contraction minimal with respect to being tangled and satisfying (a)-(c). By

Claims 1 and 2, for each L ∈ L7, there exists a minimal cover BL ∈ b(C) of cardinality three picking one

element from each Vi, i ∈ L. For each i ∈ [7], let

Xi := Vi ∩

( ⋃
L∈L7

BL

)
;

notice that 1 ≤ |Xi| ≤ 3.

Claim 3. For each i ∈ [7], either |Xi| = 1 and |Ui| = |Vi| = 1, or 2 ≤ |Xi| ≤ 3 and G[Ui ∪ Vi] is a tree whose

leaves are contained in Xi.

Proof of Claim. Let W be a subset of V such that (1) W ⊆ Ui ∪ Vi, (2) Xi ⊆ W , (3) |W | ≥ 2, (4) G[W ] is

connected, and (5) W is minimal subject to (1)-(4). Let {U ′i , V ′i } be the bipartition of G[W ] where U ′i ⊆ Ui

and Xi ⊆ V ′i ⊆ Vi. Notice that if |Xi| = 1 then |U ′i | = |V ′i | = 1, and if 2 ≤ |Xi| ≤ 3 then G[W ] must be a

tree whose leaves are contained in Xi by Remark 5.3. Let I := (Ui ∪ Vi)− (U ′i ∪ V ′i ). Notice that C/I is clean

and tangled, and satisfies (a) and (b). Moreover, since BL ∩ I = ∅ for each L ∈ L7, C/I also satisfies (c). Our

minimal choice of C implies that I = ∅, so U ′i = Ui and V ′i = Vi, thereby finishing the proof of the claim. ♦

Claim 4. For each i ∈ [7], |Xi| = 1 and |Ui| = |Vi| = 1.

Proof of Claim. Suppose otherwise. We may assume thatG[U1∪V1] is not an edge. It then follows from Claim 3

that 2 ≤ |X1| ≤ 3 andG[U1∪V1] is a tree whose leaves are contained inX1. Pick a leaf u of the treeG[U1∪V1]

that belongs to exactly one of B{1,2,3}, B{1,4,5}, B{1,6,7}, and let C′ := C/u. Since u is a leaf of G[U1 ∪ V1], C′

is clean and tangled, and satisfies (a) and (b). Moreover, as u belongs to exactly one of (BL : L ∈ L7), C′ also

satisfies (c), a contradiction to the minimality of C. ♦

Let C′ := C/(U1 ∪ · · · ∪ U7).

Claim 5. C′ ∼= L7.

Proof of Claim. We know that BL ∈ b(C′) for each L ∈ L7, and that by Claim 1, these are the only minimal

covers of C′ of cardinality at most three. After a possible relabeling of its elements, we may assume that C′ has

ground set [7], and that BL = L for each L ∈ L7. We claim that b(C′) = L7. Suppose otherwise. Then b(C′)
has a member B of cardinality at least four. As L7 ⊆ b(C′), it follows that |B| = 4 and B = [7] − L for some

L ∈ L7. However, B is also a minimal cover of C that is disjoint from
⋃

i/∈L Ui ∪
⋃

j∈L Vj , a contradiction to

(b). As a result, b(C′) = L7, so C′ = b(L7) = L7, as claimed. ♦

As a result, C′ has an L7 minor, thereby finishing the proof of Lemma 5.4.

26



5.3 Proof of Theorem 1.8

Let us start with the following remark about the cocycle space of the Fano matroid:

Remark 5.5. cuboid(cocycle(PG(2, 2))) is, after a possible relabeling, a clutter over ground set {1, 2, . . . , 7,
1̄, 2̄, . . . , 7̄} satisfying the following statements:

• the members are {̄i : i ∈ [7]} and {i : i /∈ L} ∪ {j̄ : j ∈ L} for all L ∈ L7,

• the cardinality-three minimal covers are {̄i, j̄, k̄}, {̄i, j, k}, {i, j̄, k}, {i, j, k̄} for all {i, j, k} ∈ L7,

• every cardinality-three minimal cover is contained in exactly two members.

Let S := cocycle(PG(2, 2)). As S is a binary space, it follows from Remark 3.1 that S4p = S for every

point p ∈ S. In particular, every member of cuboid(S) can be treated as the first member {̄i : i ∈ [7]} above.

Proposition 5.6. Let C be a clean tangled clutter over ground set V that has a unique fractional packing of

value two, and of rank seven. Then C has an L7 minor.

Proof. Let G := G(C), and for each i ∈ [7], let {Ui, Vi} be the bipartition of the ith connected component of

G. Let y be the fractional packing of C of value two. As C has rank seven, it follows from Theorem 1.7 that

support(y) is a duplication of cuboid(cocycle(PG(2, 2))). As support(y) ⊆ core(C), it follows from Re-

mark 2.4 and Remark 5.5 that, after possibly relabeling and swapping Ui, Vi, i ∈ [7], the following sets are the

members of support(y):
7⋃

j=1

Vj and
⋃
i/∈L

Ui ∪
⋃
j∈L

Vj ∀L ∈ L7.

A subset B ⊆ V is a special cover of C if it is a monochromatic minimal cover intersecting at most three

connected components of G.

Claim 1. If B is a special cover of C, then

• there is a unique L ∈ L7 such that B ∩ (Ui ∪ Vi) 6= ∅ for each i ∈ L,

• {i ∈ L : B ∩ Ui 6= ∅} has even cardinality, and

• B is contained in exactly two members of support(y).

Proof of Claim. This follows immediately from Remark 5.5. ♦

Given a special cover B, we refer to L from Claim 1 as the Fano line corresponding to B, and to {i ∈ L :

B ∩ Ui 6= ∅} as the trace of B.

Claim 2. For every Fano line L ∈ L7, there are three corresponding special covers with pairwise different

traces.
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Proof of Claim. Suppose otherwise. We may assume by symmetry between the members of L7 that L =

{1, 2, 3}. By Claim 1, every special cover corresponding to L has trace ∅, {1, 2}, {1, 3} or {2, 3}. We may

assume by symmetry between the members of cuboid(cocycle(PG(2, 2))) that every special cover correspond-

ing to line L, if any, has trace {1, 2} or {1, 3}. Let C′ := C \ V1/U1 and G′ := G(C′). By Lemma 4.1,

C′ is clean and tangled and has a unique fractional packing of value two, and given that z is the fractional

packing of C′ of value two, support(z) = support(y) \ V1/U1. In particular, support(z) is a duplication of

cuboid(cocycle(PG(1, 2))) by Remark 4.3. Theorem 1.7 applied to C′ now tells us that

rank(C′) = 22 − 1 = 3.

Observe that for i ∈ [7]− {1}, G[Ui ∪ Vi] ⊆ G′[Ui ∪ Vi], so G′[Ui ∪ Vi] is connected. Let us refer to the edges

of G′ not contained in any G′[Ui ∪ Vi], i ∈ [7]− {1} as crossing edges. We claim that

(?) for every crossing edge {u, v}, either {u, v} ⊆ U4 ∪ U5, {u, v} ⊆ V4 ∪ V5, {u, v} ⊆ U6 ∪ U7

or {u, v} ⊆ V6 ∪ V7.

To this end, pick distinct i, j ∈ [7] − {1} such that u ∈ Ui ∪ Vi and v ∈ Uj ∪ Vj . Then V1 ∪ {u, v} contains a

minimal cover of C, which is inevitably special. It therefore follows from Claim 1 that {1, i, j} ∈ L7, and either

{u, v} ⊆ Ui ∪ Uj or {u, v} ⊆ Vi ∪ Vj . Since there is no special cover corresponding to line {1, 2, 3} and trace

either ∅, {2, 3}, it follows that {i, j} = {4, 5} or {6, 7}, so (?) holds. However, (?) implies that G′ has at least

four connected components, so rank(C′) ≥ 4, a contradiction. ♦

Claim 3. There is a member of support(y) that contains six special covers corresponding to different Fano

lines.

Proof of Claim. By Claim 2, there are 21 = 7 × 3 special covers B1, . . . , B21 such that for distinct i, j ∈ [21],

if Bi and Bj correspond to the same Fano line, then they have different traces. By Claim 1, each Bi, i ∈ [21]

is contained in exactly two members of support(y). As a result, there is a member of support(y) containing at

least 21×2
8 > 5 special covers among B1, . . . , B21, as required. ♦

We may assume that
⋃7

j=1 Vj contains six special covers corresponding to different Fano lines. As C satisfies

conditions (a)-(c), we may apply Lemma 5.4 to conclude that C has an L7 minor, as required.

We are now ready for the main result of this section:

Proof of Theorem 1.8. Let C be a clean tangled clutter with a unique fractional packing of value two and of rank

more than three. Let y be the fractional packing of C of value two. It then follows from Theorem 1.7 that for

some integer k ≥ 3, C has rank 2k− 1, and support(y) is a duplication of cuboid(cocycle(PG(k − 1, 2))). We

prove by induction on k ≥ 3 that C has an L7 minor. The base case k = 3 follows from Proposition 5.6. For

the induction step, assume that k ≥ 4. Let {U,U ′} be a connected component of G(C), and let C′ := C \ U/U ′.
By Lemma 4.1, C′ is clean tangled and has a unique fractional packing of value two, and if z is the fractional

packing of C′ of value two, then support(z) = support(y) \U/U ′. In particular, support(z) is a duplication of

28



cuboid(cocycle(PG(k − 2, 2))) by Remark 4.3. Thus C′ has rank 2k−1−1 by Theorem 1.7, so by the induction

hypothesis, C′ and therefore C has an L7 minor, thereby completing the induction step. This finishes the proof

of Theorem 1.8.

5.4 Ideal clutters and an application

Theorem 1.8 has a geometric consequence; let us elaborate. A clutter C over ground set V is ideal if the

associated set covering polyhedron {
x ∈ RV

+ :
∑
v∈C

xv ≥ 1 C ∈ C

}

is integral [15] (see also [1]). It can be readily checked by the reader that the deltas and L7 are non-ideal

clutters. (In fact, every identically self-blocking clutter different from {{a}} is non-ideal [7].) It can also be

readily checked that every extended odd hole is non-ideal. It is well-known that a clutter is ideal if and only if

its blocker is ideal [17, 20]. In particular, the blocker of an extended odd hole is also non-ideal. Moreover, if a

clutter is ideal, so is every minor of it [24]. Thus, every ideal clutter is clean.

Theorem 5.7. Let C be a clean tangled clutter. If conv(setcore(C)) is a simplex, then at least one of the following

statements holds:

(i) setcore(C) = {0, 1}, i.e. core(C) consists of two members that partition the ground set,

(ii) setcore(C) ∼= {000, 110, 101, 011}, i.e. core(C) is a duplication of Q6, or

(iii) C is non-ideal.

Proof. Let r := rank(C). If r > 3, then C has an L7 minor by Theorem 1.8, so (iii) holds in particular.

Otherwise, 1 ≤ r ≤ 3. It follows from Theorem 1.7 that setcore(C) is isomorphic to either cocycle(PG(0, 2)) =

{0, 1} or cocycle(PG(1, 2)) = {000, 110, 101, 011}, so either (i) or (ii) holds, as required.

Observe that the statement of Theorem 5.7 is geometric while our proof is purely combinatorial, further

stressing the synergy between the combinatorics and the geometry of clean tangled clutters. Recently, the authors

gave an example of an infinite class of clean tangled clutters (more precisely, ideal minimally non-packing

clutters with covering number two) that belong to category (ii) of Theorem 5.7 [9].

6 Future directions for research

Clean tangled clutters were the subject of study in this paper. It was proved that the convex hull of the setcore

of every such clutter is a full-dimensional polytope containing the center point of the hypercube in its interior

(Theorem 1.5). The setcore has a simplicial convex hull if and only if it is the cocycle space of a projective
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geometry over the two-element field (Theorem 1.7). Moreover, if the setcore has a simplicial convex hull, then

the clutter has rank at most three or it has an L7 minor (Theorem 1.8).

We conclude the paper with three directions for future research.

Our results expose a fruitful interplay between the combinatorics and the geometry of clean tangled clutters.

Further along these lines, and an extension of Theorem 1.5, is a min-max relation that holds for such clutters and

relates a geometric parameter to a combinatorial parameter. Given a clean tangled clutter C of rank r, denote by

µ(C) the minimum cardinality of a monochromatic cover of C, and by depth(C) the maximum d such that there

exists a d-dimensional subhypercube of {0, 1}r disjoint from setcore(C). (If there is no monochromatic cover

then µ(C) :=∞, and if setcore(C) = {0, 1}r then depth(C) := −∞.)

Theorem 6.1 ([2]). Let C be a clean tangled clutter. Then rank(C)− µ(C) = depth(C).

A clutter C embeds PG(k−2, 2) if some subset of C is a duplication of the cuboid of cocycle(PG(k − 2, 2)).

This notion was defined in [5]. We conjecture that,

Conjecture 6.2. Every clean tangled clutter embeds a projective geometry over the two-element field.

This conjecture has an intimate connection to dyadic fractional packings of value two in clean tangled clutters;

see [3]. Observe that Theorem 1.7 proves Conjecture 6.2 when the setcore of the clutter has a simplicial convex

hull.

The following variant of Conjecture 6.2 has also been conjectured:

Conjecture 6.3 ([5]). There exists an integer ` ≥ 3 such that every ideal tangled clutter embeds one of

PG(0, 2), . . . , PG(`− 1, 2).

This conjecture has an intimate connection to the idealness of k-wise intersecting clutters [5, 6]. Observe that

Theorem 5.7, which is a consequence of Theorem 1.8, proves Conjecture 6.3 for ` = 3 when the setcore of the

clutter has a simplicial convex hull (in fact, ` = 2 suffices here).
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[8] A. Abdi, G. Cornuéjols, and D. Lee. Intersecting restrictions in clutters. Combinatorica, 40:605–623, Apr 2020.
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[12] A. Abdi, K. Pashkovich, and G. Cornuéjols. Ideal clutters that do not pack. Mathematics of Operations Research,

43(2):533–553, 2017.
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