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Abstract

Let G = (V,E) be a matching-covered graph, denote by P its perfect matching polytope,
and by L the integer lattice generated by the integral points in P . In this paper, we give polyhedral
proofs for two difficult results established by Lovász (1987), and by Carvalho, Lucchesi, and Murty
(2002) in a series of three papers. More specifically, we reprove that L has a lattice basis consisting
solely of incidence vectors of some perfect matchings of G, 2x ∈ L for all x ∈ lin(P )∩ZE , and if
G has no Petersen brick then L = lin(P )∩ZE . This is achieved by studying the facial structure of
P and its relationship with the lattice L. Along the way, we give a new polyhedral characterization
of the Petersen graph.

Keywords: matching-covered graph, matching lattice, lattice basis, Petersen graph, Birkhoff–von
Neumann graph, separating cut.

1 Introduction

Let G = (V,E) be a matching-covered graph, that is, a graph where every edge appears in a perfect
matching. Denote by P (G) the polytope whose vertices are the incidence vectors of the perfect match-
ings of G, and by L(G) the (integer) lattice generated by the integral points in P (G), i.e., L(G) is the
set of all integer linear combinations of P (G) ∩ {0, 1}E .

A seminal result in combinatorial optimization due to Edmonds and Johnson [EJ73] is that P (G)
can be described by non-negativity inequalities: xe ≥ 0, e ∈ E, degree equations: x(δ(v)) = 1, v ∈
V , and odd cut inequalities amounting to x(δ(U)) ≥ 1 for all odd-sized subsets U ⊂ V . Here,
x(A) denotes

∑
a∈A xa. Later Seymour [Sey79] gave a graph-theoretic proof of this result using

Tutte’s characterization of perfect matchings [Tut47]. In the same paper, through a long and technical
argument, Seymour proved that in a bridgeless cubic graph, the all-2s vector belongs to L(G), and in
fact the all-1s vector belongs to the lattice ifG has no Petersen minor, thus establishing weaker variants
of the Berge-Fulkerson conjecture and Tutte’s 4-flow conjecture, respectively [Ful71, Tut66].

Naddef [Nad82] and Edmonds, Pulleyblank, and Lovász [EPL82] computed the dimension of
P (G) based on structural properties of G. These lines of questions led to the development of a fasci-
nating area known as matching theory [LP09, LM24]. In a seminal paper of the area, Lovász [Lov87]
gave a far-reaching extension of Seymour’s result and characterized the vectors in L(G), and proved
that 2x ∈ L for all x ∈ lin(P (G))∩ZE , and if G has no Petersen brick then L(G) = lin(P (G))∩ZE .
Here, lin(S) denotes the linear hull of S for S ⊆ RE . The core of his argument was proving a difficult
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lemma that characterized the dual lattice for a non-Petersen brick. This lengthy proof drew on key tools
from matching theory, including the notions of barrier cuts, 2-separation cuts, and ear decompositions.

In a series of three excellent papers [dCLM02a, dCLM02b, dCLM02c], totaling over 120 pages,
Carvalho, Lucchesi, and to Murty proved thatG admits an ear decomposition that, vaguely speaking, is
sensitive to the numbers of bricks and Petersen bricks, and as a key application, they proved that L(G)
has a lattice basis B consisting solely of incidence vectors of some perfect matchings of G, that is, B
is a (linear) basis for lin(L(G)), and every vector in lin(L(G)) ∩ ZE is an integer linear combination
of B. This in turn answered a question raised by Murty ([Mur94], Problem 7.3).

Main Theorem. In this paper, we give a polyhedral proof of the theorems mentioned due to Lovász,
and Carvalho, Lucchesi, and Murty, namely the following combined theorem. A Petersen brick is any
graph whose simplification is the Petersen graph.

Theorem 1.1 ([dCLM02c, Lov87]). Let G = (V,E) be a matching-covered graph, let L := L(G)
and L̄ := lin(P (G)) ∩ ZE . Then L has a lattice basis consisting solely of some perfect matchings of
G. Furthermore, if G has p Petersen bricks in its tight cut decomposition, then

L = L̄ ∩ {x : x(Ai) ≡ 0 (mod 2), ∀i ∈ [p]} ,

where each Ai is the edge set of some 5-cycle of the ith Petersen brick. In particular, if p = 0 then
L = L̄, and if p ≥ 1 then 2x ∈ L for all x ∈ L̄.

Above, [p] denotes {1, 2, . . . , p} for p ≥ 1, and ∅ for p = 0. Our proof mostly circumvents the
lengthy graph-theoretic arguments, and in particular has no dependence on matching theoretic notions
such as 2-separation cuts, braces, removable edges, and ear decompositions, and minimal dependence
on the notions of barriers and bricks. It also eliminates the need to study the dual lattice through
matching-integral vectors. Instead, our proof is based on polyhedral, or otherwise polyhedrally-driven
graph-theoretic arguments that study the relationship between the lattice and the facial structure of the
polytope.

The Integral Basis Theorem. A matching-covered graph is Petersen-free if it has no Petersen brick
in its tight cut decomposition. A key notion needed for our proof is that of an integral basis for a
rational linear subspace, which is a basis B such that every integral vector in the subspace is an integer
linear combination of B. The crux of Theorem 1.1 is the following special case.

Theorem 1.2. Let G = (V,E) be a Petersen-free matching-covered graph. Then lin(P (G)) has
an integral basis consisting solely of the incidence vectors of some perfect matchings. In particular,
L(G) = lin(P (G)) ∩ ZE .

Our proof of this theorem is based on two key ingredients.

The Petersen Graph Lemma. A graph G = (V,E) is Birkhoff–von Neumann (BvN) if P (G) ={
x ∈ RE

≥0 : x(δ(v)) = 1, ∀v ∈ V
}

[dCKWL20] (see also [Bal81, dCLM04]). That is, G is not BvN
if, and only if, P (G) has a facet-defining inequality not exposed by a non-negativity inequality. By
the Edmonds-Johnson theorem, such a facet must be exposed by (a special type of) an odd cut, which
we refer to as a separating facet-defining cut of G. It is well-known that every bipartite graph is BvN,
though some non-bipartite graphs such as K4 can also be BvN. We shall prove the following lemma.
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Lemma 1.3. Let G = (V,E) be a brick, and d the (affine) dimension of P (G). Suppose every face of
dimension d − 2 is exposed by a non-negativity inequality. Then |V | ≤ 10. Furthermore, either G is
the Petersen graph, or G is BvN, or there exist a perfect matching M and a separating facet-defining
cut C such that |M ∩ C| = 3.

The Intersection Theorem. A near-brick is a matching-covered graph with exactly one brick in its
tight cut decomposition. We shall need the following theorem.

Theorem 1.4. Let G = (V,E) be a Petersen-free non-BvN near-brick. Then there exists a perfect
matching M and a separating facet-defining cut C such that |M ∩ C| = 3.

This is a special case of a more general result by Campos and Lucchesi [CL00], claiming in par-
ticular that in G as above, for every non-tight separating cut C, there is a perfect matching M such
that |M ∩ C| = 3. The Intersection Theorem is a slight variant of the main theorem in the two pa-
pers [dCLM02a, dCLM02b], which establishes in an arbitrary matching-covered graph the minimum
intersection size between a perfect matching and a separating cut with intersection size at least three.

The main ideas. Let d := dim(P (G)). The proof of the Intersection Theorem proceeds by first
reducing to bricks, then to the case where every facet of P (G) is not exposed by a non-negativity
inequality, and finally to the case where every (d− 2)-face, i.e., a face of dimension d− 2, is exposed
by a non-negativity inequality. We then resort to the Petersen Graph Lemma to finish the proof.

The proof of the Integral Basis Theorem proceeds by reducing the problem to bricks. If G is BvN,
then P (G) has the ‘integer decomposition property’, which we use to settle the claim. Otherwise, by
the Intersection Theorem, there is a separating facet-defining cutC and a perfect matchingM such that
|C∩M | = 3. After potentially tweaking (C,M), we then decomposeG into two smaller Petersen-free
matching-covered graphs G1 and G2, find integral bases B1 and B2 for each and compose them, and
then add the incidence vector of M to obtain an integral basis for G.

Outline. In §2, we give a brief overview of necessary notions and results from matching theory, and
in §3, we give a short proof of the Petersen Graph Lemma. In §4, we present further preliminary
results, and in §5, we prove the Intersection Theorem. Finally, in §6, we prove the Integral Basis
Theorem, and then obtain the Main Theorem as a consequence.

2 Ingredients for the Petersen Graph Lemma

Fix a matching-covered graph G = (V,E). For an odd cut C and an edge e ∈ E, denote by P (G;C)
and Pe(G) the faces P (G) ∩ {x : x(C) = 1} and P (G) ∩ {x : xe = 0} of P (G), respectively.

2.1. Separating cuts. Let C = δ(X) be an odd cut such that 1 < |X| < |V | − 1. We say that C is
separating, or contractible, in G if P (G;C) is not contained in {x : xe = 0} for any edge e ∈ E. We
refer toG/X,G/X̄ as theC-contractions or cut-contractions ofG. We denote the contraction vertices
in a cut-contractionG/X by the corresponding lower case letter x. Observe that C is separating if, and
only if, both C-contractions are matching-covered. Observe further that if δ(X), δ(Y ) are odd cuts of
G such that X ⊂ Y , where δ(Y ) is separating in G, and δ(X) is separating in G/Ȳ , then δ(X) is
separating in G.
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2.2. Bricks. A tight cut is an odd cut C = δ(X) such that 1 < |X| < |V | − 1 and P (G;C) = P (G).
Clearly, a tight cut is separating. A matching-covered graph with no tight cut is a brick if it is non-
bipartite, and is a brace otherwise. Cut-contractions along tight cuts repeatedly give rise to a binary
tree rooted at G whose leaves correspond to a tight cut decomposition of G into bricks and braces.
The matching polytope P (G) is known to have dimension |E| − |V | + 1 − b(G), where b(G) is the
number of bricks of G in a (or any) tight cut decomposition [Nad82, EPL82]. In fact, the list of bricks
and braces in a tight cut decomposition is unique up to the multiplicity of the edges in each brick and
brace [Lov87]. Finally, b(G) = 0 if and only if G is bipartite [Nad82].

2.3. Separating facet-defining cuts. Let δ(X) be an odd cut that is facet-defining for P (G). In
particular, 1 < |X| < |V |−1. Observe that C is not separating if, and only if, xe ≥ 0 defines the same
facet of P (G). Subsequently, G is not BvN if, and only if, there exists a separating facet-defining cut.

3 Proof of the Petersen Graph Lemma

Let v := |V | and e := |E|, let f be the number of facets and t the number of (d−2)-faces of P (G). As
G is a brick, it follows that d = e − v. Observe that every facet of the d-dimensional polytope P (G)
has at least d distinct adjacent facets, and each adjacency defines a distinct (d− 2)-face. Furthermore,
every (d− 2)-face belongs to exactly 2 facets. Thus, t ≥ f ·d

2 . Given that every (d− 2)-face is exposed
by xe ≥ 0 for some edge e ∈ E, and each such edge defines at most one (d − 2)-face, it follows that
e ≥ t. Furthermore, f ≥ d+ 1 as P (G) is d-dimensional, so

e ≥ t ≥ fd

2
≥
(
d+ 1

2

)
=

(
e− v + 1

2

)
.

Subsequently, e ≥
(
e−v+1

2

)
, which can be rewritten as e+v ≥ (e−v)2. Given thatG is a brick, we

may assume every vertex u has degree at least 3 (otherwise, u would have 1 or 2 neighbors, and asG is
a brick, v ∈ {2, 4}). Subsequently, 2e− 3v ≥ 0. Let us now solve the following convex minimization
problem:

min
{

(x− y)2 − x− y : −2x+ 3y ≤ 0, 10− y ≤ 0
}
.

We see that at the minimum, x = 15, y = 10, and the Lagrange multipliers for the inequalities
are λ = 9/2 and µ = 5/2, respectively, and the optimal value is 0. Subsequently, the inequalities
e+ v ≥ (e− v)2 and 2e− 3v ≥ 0 imply that v ≤ 10, and if v = 10 then e = 15.

SupposeG is not BvN, and there do not exist a perfect matchingM and a separating facet-defining
cut C such that |M ∩ C| = 3. We shall prove that G is the Petersen graph.

We claim that v = 10. If not, then v ≤ 8. As G is not BvN, P (G) has a facet not exposed by a
non-negativity inequality, say it is exposed by an odd cut C = δ(X). Then C must be separating, so
3 ≤ |X| ≤ |V \X| ≤ v − 3. Thus, v ∈ {6, 8} and |X| = 3. Let M be a perfect matching such that
|M ∩ C| > 1. As |X| = 3, it follows that |M ∩ C| = 3, a contradiction.

Thus, v = 10, and so e = 15 and e + v = (e − v)2, implying that e = t = fd
2 =

(
d+1
2

)
, and so

f = d+1 = 6. In particular,G is a cubic graph as 2e = 3v, and no facet is exposed by a non-negativity
inequality as e = t.

Let C = δ(X) be one of the 6 facet-defining cuts, which must be separating. As there is no perfect
matching intersecting C three times, it follows that |X| = |V \ X| = 5, and |C| ≥ 5. As connected
subgraphs,G[X], G[V \X] each contains at least 4 edges, so |C| ∈ {5, 7} and both ofG[X], G[V \X]
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are either 5-cycles or 4-paths. In the case of the latter, the C-contractions are not matching-covered,
which is a contradiction as C is separating. Thus, |C| = 5 and both of G[X], G[V \X] are 5-cycles.
As there is no perfect matching intersecting C three times, there is no 4-cycle intersecting C twice,
implying in turn that G is the Petersen graph, as required.

4 Ingredients for the Intersection Theorem

LetG = (V,E) be a matching-covered graph, and let d := dim(P (G)). LetC = δ(X) be a separating
cut, and let G1 := G/X and G2 := G/X̄ . Suppose

B1 := {x1, . . . , xd̂1} ⊆ P (G1) ∩ {0, 1}E(G1) and B2 := {y1, . . . , yd̂2} ⊆ P (G2) ∩ {0, 1}E(G2)

are bases for lin(P (G1)) and lin(P (G2)), respectively. Observe that |Bi| = 1 + dim(P (Gi)) for
i ∈ [2]. These notations and objects are fixed throughout this section. We proceed to state several
preliminary claims, and present proofs for the non-trivial, non-routine statements.

4.1. Composition along separating cuts. Given vectors x ∈ RE(G1) and y ∈ RE(G2) such that
xe = ye for all e ∈ C, we define z := x�y ∈ RE as follows: ze := xe if e ∈ E(G1)\E(G2), ze := ye
if e ∈ E(G2) \ E(G1), and ze := xe = ye if e ∈ C. For each e ∈ C, let Ie := {i ∈ [d̂1] : xie = 1}
and Je := {j ∈ [d̂2] : yje = 1}. Then both Ie, Je are nonempty as G1, G2 are matching-covered. Write
Ie = {i1, . . . , ik} and Je = {j1, . . . , j`}, and let

zet := xi1 � yjt , t = 1, . . . , ` and ze`+t := xi1+t � yj1 , t = 1, . . . , k − 1.

Let B1 � B2 := {zei : e ∈ C, 1 ≤ i ≤ |Ie| + |Je| − 1}. This is also known as the merger operation
([LM24], §6.3.1). The following statements can be readily checked for B := B1 � B2 (see §A for a
proof).

(1) B ⊆ P (G;C) ∩ {0, 1}E , |B| = |B1|+ |B2| − |C|, and B is a basis for lin(P (G;C)).

(2) If Bi is a lattice basis for L(Gi) for i ∈ [2], then B is a lattice basis for the lattice generated by
the integral points in P (G;C).

(3) If Bi is an integral basis for lin(P (Gi)) for i ∈ [2], then B is an integral basis for lin(P (G;C)).

Furthermore, we have the following.

(4) Suppose B1 \ {x1} ⊆ {x : x(D) = 1} for some D ⊆ E(G1), and B1 \ {x1} 6⊆ {x : xf = 0}
for any f ∈ E(G1). We can then apply the composition procedure in such a way that for some
z? ∈ B, we have B \ {z?} ⊆ {z : z(D) = 1}, B \ {z?} 6⊆ {z : zf = 0} for any f ∈ E, and
z?(D) = x1(D).

To achieve this, for the element e ∈ C such that x1e = 1, we index Ie such that xi1 6= x1, which
is possible as B1 \ {x1} 6⊆ {x : xe = 0} and so k ≥ 2. This guarantees that x1 is composed
only once with some other vector yj in B2. We set z? := x1 � yj .

4.2. Uncrossing odd cuts. Let C1 = δ(X1), C2 = δ(X2) be separating cuts where |X1 ∩X2| is odd,
and X1, X2 cross, meaning that X1 ∩X2, X1 \X2, X2 \X1, X1 ∪X2 are nonempty. Suppose further
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that P (G;C1) ∩ P (G;C2) 6⊆ {x : xe = 0} for any edge e ∈ E. In particular, no edge of G goes
from X1 \X2 to X2 \X1, as such an edge would not belong to any perfect matching intersecting both
C1, C2 exactly once. Let I := δ(X1 ∩X2) and U := δ(X1 ∪X2), both of which are odd cuts of G.
As there is no edge from X1 \X2 to X2 \X1, it follows that x(C1) + x(C2) = x(I) + x(U). Thus,
P (G;C1) ∩ P (G;C2) = P (G; I) ∩ P (G;U).

4.3. BvN cut-contractions. Suppose both G1, G2 are BvN. Then every facet of the polytope P (G;C)
is exposed by a non-negativity inequality. To see this, note that by definition, P (G1), P (G2) are
described by non-negativity inequalities and degree equations. Thus, it can be readily checked that
P (G;C) is described by non-negativity inequalities, degree equations, and x(C) = 1, in turn implying
the claim.

4.4. Number of bricks in cut-contractions. Suppose x(C) ≥ 1 exposes a face of P (G) of dimension
d− i, for some integer i ≥ 0. Then 1 + d− i = |B| = |B1|+ |B2| − |C|, so

|E|− |V |+ 2− b(G)− i = |E(G1)|− |V (G1)|+ 2− b(G1) + |E(G2)|− |V (G2)|+ 2− b(G2)−|C|,

implying in turn that b(G1) + b(G2) = b(G) + i.

4.5. Number of bricks in cut-contractions of near-bricks. (1) In general, if one of G1, G2 is bi-
partite, then a simple counting argument implies that C is a tight cut. That is, if C is not tight, then
min{b(G1), b(G2)} ≥ 1. (2) The converse also holds if G is a near-brick, by 4.4. (3) Subsequently, if
G is a near-brick, then C is facet-defining if, and only if, both G1, G2 are near-bricks.

4.6. Tight cuts in near-bricks and barriers. Suppose G is a near-brick, and C is a tight cut of G.
Then one ofG1, G2 is a near-brick while the other one, sayG1, is bipartite, by 4.4. LetB be the part in
a bipartition ofG1 where x /∈ B. Observe thatB is an independent set ofG, andG\B has exactly |B|
connected components, one of which is X , and all others are singletons. We say that B is a barrier in
G, and C is a barrier cut with barrier B. A barrier is maximal if it is not contained in another barrier.1

4.7. Tight cuts in near-bricks and facet-defining cuts. Suppose G is a near-brick, C is a tight cut of
G, G1 is bipartite, and G2 is a non-BvN near-brick. If D = δ(Y ) is a separating facet-defining cut of
G2 with Y ⊂ X , then D is a separating facet-defining cut of G.

To this end, as D is separating in G2, and C is separating in G, it follows that D is separating in
G. As G2 is a near-brick, both G2/Y,G2/Ȳ are near-bricks, by 4.5, part (3). Thus, G/Ȳ = G2/Ȳ
is a near-brick. As G2/Y is a near-brick, C = δ(X̄) is a tight cut in G/Y , and G1 is bipartite, it
follows that G/Y is a near-brick. Subsequently, both G/Y,G/Ȳ are near-bricks, implying that D is a
separating facet-defining cut of G, by 4.5, part (3).

4.8. Equivalent cuts in near-bricks. Two odd cuts C1, C2 are equivalent if x(C1) = x(C2) for all
x ∈ P (G). Suppose G is a near-brick, and C1 = δ(X1), C2 = δ(X2) are separating cuts that define
one and the same facet, where |X1 ∩X2| is odd. We claim that C1, C2 are equivalent; furthermore, if
X1 ⊂ X2, then G/X1/X̄2 is bipartite. To this end, note that G/X̄1, G/X̄2 are near-bricks.

If X1 = X2, then the claim is clear.
1Barriers are defined more broadly and for all matching-covered graphs, but for our purposes, we shall focus only on the

(special type of) barriers defined here for near-bricks.
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If X1, X2 do not cross, say X1 ⊂ X2, then δ(X1) is a tight cut in the near-brick G/X̄2, and as
G/X̄1 is a near-brick, it follows that G/X1/X̄2 is bipartite matching-covered with x1, x̄2 on opposite
sides of any bipartition. A simple counting argument now implies that for every perfect matching M
of G, |M ∩ δ(X1)| = |M ∩ δ(X2)|, so C1, C2 are equivalent cuts in G.

Otherwise, X1, X2 cross. Let I := δ(X1 ∩ X2) and U := δ(X1 ∪ X2). Given that P (G;C1) ∩
P (G;C2) = P (G;C1) 6⊆ {x : xe = 0} for any edge e ∈ E, it follows from 4.2 that P (G;C1) =
P (G; I)∩P (G;U). As P (G;C1) is a facet of P (G), at least one of I, U must define the same facet as
C1, say it is I . By applying the argument above to X1, X1 ∩X2, and also to X2, X1 ∩X2, we obtain
that C1, I and C2, I are equivalent, so C1, C2 are equivalent, as claimed.

4.9. Basis for near-bricks with a Petersen brick. Suppose G is a near-brick with a Petersen brick
H obtained through a tight cut decomposition. Let Y be the vertex set of a 5-cycle of H , and let
D := δ(Y ). Then there exist perfect matchings M0,M1, . . . ,Md of G whose incidence vectors form
a basis for lin(P (G)), where |M0 ∩ D| = 5, |Mi ∩ D| = 1 for all i ∈ [d], and every edge of G is
contained in at least one of M1, . . . ,Md.

To see this, note first that the Petersen graph P has exactly six perfect matchings N0, N1, . . . , N5,
whose incidence vectors form a basis for lin(P (P)). One of the perfect matchings, say N0, intersects
δP(Y ) in five edges, while the remaining perfect matchings intersect δP(Y ) just once. Note further
that every edge of P belongs to exactly two perfect matchings, so at least one of these must be among
N1, . . . , N5.

Subsequently, given that H is obtained from P by adding some p edges parallel to existing edges,
we can find perfect matchingsN6, . . . , Np+5 ofH such that the incidence vectors ofN0, N1, . . . , Np+5

form a basis for lin(P (H)), |N0 ∩ D| = 5, and |Ni ∩ D| = 1 for all i ∈ [p], and every edge of H
belongs to at least one of N1, . . . , Np+5.

The existence of M0,M1, . . . ,Md now follows by recursively applying 4.1, part (4).

4.10. Cut and face triples. A cut triple is a tuple (C1, C2, C3) of odd cuts of G of the form Ci =
δ(Xi), i ∈ [3] such that X1 ⊂ X2 ⊂ X3. A face triple is a tuple (F1, F2, F3) of faces of P (G) such
that F2 ∩ F1 = F2 ∩ F3, F2 ∩ F3 is not contained in {x : xe = 0} for any e ∈ E, and at least one of
F2 \ F1, F2 \ F3 is nonempty. We claim that a cut triple cannot define a face triple, that is, we cannot
have P (G;Ci) = Fi, i = 1, 2, 3.

Suppose otherwise. By symmetry between C1 and C3, we may assume that F2 \ F1 6= ∅. Let
M be a perfect matching such that |M ∩ C2| = 1 and |M ∩ C1| > 1. Write M ∩ C2 = {f}.
As F2 ∩ F3 6⊆ {x : xf = 0}, there exists a perfect matching M ′ such that M ′ ∩ C2 = {f} and
|M ′ ∩ C3| = 1.

Let M ′′ be the perfect matching such that M ′′ ∩C2 = {f}, and agrees with M in G[X2] and with
M ′ in G[X̄2]. Then |M ′′ ∩ C1| = |M ∩ C1| > 1 and |M ′′ ∩ C3| = |M ′ ∩ C3| = 1. Subsequently, the
incidence vector of M ′′ belongs to F2 ∩ F3 but not F2 ∩ F1, a contradiction as F2 ∩ F1 = F2 ∩ F3.

5 Proof of the Intersection Theorem

Let G = (V,E) be a Petersen-free non-BvN near-brick. We prove by induction on |E| that there exist
a perfect matching M and a separating facet-defining cut C such that |M ∩ C| = 3; we shall call
(M,C) a desired pair. We proceed in four stages.
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From near-bricks to bricks. We first reduce to the case where G is a brick. To this end, suppose
G has a tight cut, and let G1, G2 be the corresponding cut-contractions, where G1 is bipartite, and G2

is a Petersen-free near-brick. We know that G2 is non-BvN, by 4.3. By the induction hypothesis, G2

has a perfect matching N and a separating facet-defining cut C such that |N ∩ C| = 3. Then C is a
separating facet-defining cut of G, by 4.7. Thus, by extending N to a perfect matching M of G, we
see that (M,C) is a desired pair.

The facets. Next we reduce to the case where no facet of P (G) is exposed by a non-negativity
inequality.

Suppose some facet of P (G) is exposed by a non-negativity inequality. As G is not BvN, there
exists one such facet, say exposed by xe ≥ 0, that is adjacent to a facet not exposed by a non-negativity
inequality.

We claim that G \ e is a non-BvN near-brick. To this end, let F be the union of all perfect match-
ings of G \ e. Then G|F is a matching-covered graph such that P (G|F ) is obtained from the facet
Pe(G) after removing the coordinates that are equal to 0 throughout the facet. Our choice of the facet
Pe(G) implies that P (G|F ) has a facet not exposed by a non-negativity inequality, soG|F is not BvN,
implying in turn that G|F is not bipartite, so b(G|F ) ≥ 1. On the other hand,

d− 1 = dim(P (G|F )) = |F | − |V |+ 1− b(G|F ) = d+ 1− |E \ F | − b(G|F ),

implying in turn that |E \ F | + b(G|F ) = 2, so |E \ F | = b(G|F ) = 1. Thus, G|F = G \ e is a
non-BvN near-brick.

Suppose G \ e has a Petersen brick. Let H be the Petersen brick of G \ e, obtained through a tight
cut decomposition of G \ e. We have the following three cases.

Case 1. H = G \ e. In this case, as G is a non-Petersen brick, e must connect a pair of vertices of H at
distance 2.

Otherwise, H 6= G \ e, so G \ e has a tight cut. Every tight cut of G \ e is a barrier cut of the form
δG\e(X) with barrierB ⊂ X̄ , by 4.6. Observe that Pe(G) ⊆ P (G; δG(X)), and since P (G; δG(X)) 6=
P (G) as G is a brick, we must have Pe(G) = P (G; δG(X)). A simple counting argument implies that
e joins either two singleton components of G \ e \ B, or it joins a singleton component to X . This
implies that there exist either one or two maximal barriers only, summarized as follows.

Case 2. H = G\e/X̄ , where δG\e(X) is a barrier cut with barrierB ⊂ X̄ , andB is the unique maximal
barrier of G \ e.

Case 3. H = G\e/X̄1/X̄2, where δG\e(Xi) is a barrier cut with barrierBi ⊂ X̄i for i ∈ [2], X̄1∩X̄2 =
∅, and e joins a singleton component of G \ e \ B1 to a singleton component of G \ e \ B2.
Furthermore, B1, B2 are the only maximal barriers of G \ e.

It can be shown through an elementary though terse argument that in each of Cases 1-3, there exist
a 5-cycle of H with vertex set Y , and perfect matchings M,M ′ of G containing e, such that Y does
not use contraction vertices of H , Y is not incident to either ends of e, |M ∩ δG(Y )| = 3, and
|M ′ ∩ δG(Y )| = 1.2 Moving on, we claim that δG(Y ) is a separating facet-defining cut of G. Clearly,

2For a detailed analysis, we refer the reader to the proof of ([dCLM02a], Theorem 5.4), or ([LM24], Theorem 13.6).
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δG\e(Y ) is separating in G \ e as it is so in H . Thus, as e ∈M ′ and |M ′ ∩ δG(Y )| = 1, it follows that
δG(Y ) is separating inG. To see that δG(Y ) is facet-defining inG, pick perfect matchingsM1, . . . ,Md

whose incidence vectors lie inside the facet Pe(G) and are linearly independent; we may pick the first
d − 1 perfect matchings to have intersection 1 with δG(Y ), and the last one with intersection 5, by
4.9. We then swap Md with the perfect matching M ′ 3 e which satisfies |M ′ ∩ δ(Y )| = 1, in order
to obtain d linearly independent vectors M1, . . . ,Md−1,M

′ in the face P (G; δG(Y )), implying in turn
that δG(Y ) defines a facet of P (G). Consequently, (M, δG(Y )) is a desired pair.

We may therefore assume that G \ e is a Petersen-free non-BvN near-brick. By the induction
hypothesis, there exist a perfect matching M and a separating facet-defining cut δG\e(X) of G\e such
that |M ∩δG\e(X)| = 3. Let C := δG(X). Observe that P (G;C) is either facet of P (G), or a (d−2)-
face of P (G) contained in Pe(G). Observe further that P (G;C) is not contained in {x : xf = 0} for
any f ∈ E \ e.

Suppose first that P (G;C) is a facet of P (G). Given that e /∈M and |M ∩C| 6= 1, it follows that
P (G;C) 6= Pe(G). Subsequently, P (G;C) is not contained in {x : xf = 0} for any edge f ∈ E, so
C is a separating facet-defining cut of G. Subsequently, (M,C) is a desired pair.

In the remaining case, P (G;C) is a (d− 2)-face of P (G), contained in the facet Pe(G). Consider
now the other facet of P (G) containing P (G;C). It cannot be exposed by a non-negativity inequality,
given that P (G;C) is not contained in {x : xf = 0} for any f ∈ E \ e. In particular, the other
facet is exposed by a separating facet-defining cut of G, say D. In particular, D \ e defines the same
facet as C \ e, and so D \ e, C \ e must be equivalent cuts as G \ e is a near-brick, by 4.8. Thus,
|M ∩D| = |M ∩ C| = 3, implying in turn that (M,D) is a desired pair.

The (d − 2)-faces. Thus every non-negativity inequality defines a face of P (G) of dimension at
most d − 2. In this stage, we reduce to the case where every (d − 2)-face of P (G) is exposed by a
non-negativity inequality.

Suppose some (d − 2)-face of P (G) is not exposed by a non-negativity inequality. Take a facet
containing this face, which is exposed by a separating facet-defining cut C = δ(X). Then both C-
contractions of G are near-bricks, by 4.5, part (3). Given that the polytope P (G;C) has a facet not
exposed by a non-negativity inequality, one of the C-contractions, say G/X̄ , must be non-BvN, by
4.3.

We may assume that G/X̄ is a non-BvN brick. To argue this, note first that the unique brick of
G/X̄ is non-BvN, by 4.3. If G/X̄ is not this brick, then choose a minimal vertex subset Y ⊂ X
such that δ(Y ) is a tight cut of G/X̄ . In particular, P (G;C) ⊆ P (G; δ(Y )). As G is a brick, δ(Y )
is not tight in G, so P (G;C) = P (G; δ(Y )), therefore C, δ(Y ) are equivalent cuts and G/Y/X̄ is
bipartite, by 4.8. This, together with our minimal choice of Y , implies thatG/X̄/Ȳ = G/Ȳ is a brick.
Subsequently, by changing C = δ(X) and without changing the corresponding facet, if necessary, we
may assume G/X̄ is a non-BvN brick.

If G/X̄ is a Petersen brick, then any perfect matching M intersecting C more than once must
intersect C exactly three times, so (M,C) is a desired pair.

Therefore, we may assume that G/X̄ is a non-Petersen non-BvN brick. By the induction hypoth-
esis, G/X̄ has a separating facet-defining cut R and a perfect matching N such that |R ∩ N | = 3.
Extend N to a perfect matching M of G. Then |R ∩M | = 3 and |C ∩M | = 1. Clearly, R is a
separating cut of G. Observe that P (G;R) is either a facet, or a (d − 2)-face of P (G) contained in
P (G;C).
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If P (G;R) is a facet of P (G), then (M,R) is a desired pair.
Otherwise, P (G;R) is a (d − 2)-face of P (G) contained in P (G;C). Let P (G;D) be the other

facet of P (G) containing P (G;R). Observe that x(R) ≥ 1 and x(D) ≥ 1 define the same facet of the
polytope P (G;C). Observe further that (P (G;R), P (G;C), P (G;R)), as well as any permutation of
(P (G;R), P (G;C), P (G;D)) without P (G;R) in the middle, is a face triple.

We shall prove that (M,D) is a desired pair. To this end, write D = δ(Z) where Z ⊂ V and
|X ∩ Z| is odd. There are three cases:

Case 1. Suppose Z ⊂ X . Then D is an odd cut of G/X̄ , so R,D define the same facet of P (G/X̄), so
R,D are equivalent cuts of G/X̄ as G/X̄ is a brick, by 4.8. Thus, |D ∩N | = |R ∩N | = 3, so
|D ∩M | = |D ∩N | = 3, therefore (M,D) is a desired pair.

Case 2. Suppose X ⊂ Z. Then (R,C,D) would be a cut triple defining a face triple, thus contradicting
4.10.

Case 3. In the remaining case, X and Z cross. Let I := δ(X ∩ Z) and U := δ(X ∪ Z). Given that
P (G;C) ∩ P (G;D) = P (G;R) 6⊆ {x : xe = 0} for any e ∈ E, it follows from 4.2 that
x(C) + x(D) = x(I) + x(U) and P (G;R) = P (G;C) ∩ P (G;D) = P (G; I) ∩ P (G;U).

If {P (G; I), P (G;U)} = {P (G;R), P (G;C)} or {P (G;R), P (G;D)}, then (I,D,U) or
(I, C, U) would be a cut triple defining a face triple, respectively, thus contradicting 4.10.

If {P (G; I), P (G;U)} = {P (G;R), P (G)}, then we haveP (G; I) = P (G;R) andP (G;U) =
P (G). This holds since otherwise (R,C,U) would be a cut triple defining a face triple, thus
contradicting 4.10. The equality P (G;U) = P (G) implies that U is a trivial cut as G is a
brick, while P (G; I) = P (G;R) implies that R, I are equivalent cuts in the brick G/X̄ , so
x(I) = x(R) for all x ∈ P (G). Consequently,

x(D) = x(I) + x(U)− x(C) = x(R) + 1− x(C),

so whenever x(C) = 1, then x(R) = x(D), so |D∩M | = |R∩M | = 3, so (M,D) is a desired
pair.

Otherwise, {P (G; I), P (G;U)} = {P (G;C), P (G;D)}, then we have P (G; I) = P (G;D)
and P (G;U) = P (G;C). This holds since otherwise (R,C,U) would be cut triple defining a
face triple, thus contradicting 4.10. Now by replacing D with I we fall back to Case 1.

The finale. We have reduced to the case where G is a non-BvN non-Petersen brick where every
(d − 2)-face of P (G) is exposed by a non-negativity inequality. The existence of a desired pair now
follows from the Petersen Graph Lemma, thus finishing the proof.

6 Proof of the Main Theorem

In this final section, we prove the Integral Basis Theorem, and then obtain the Main Theorem as a
corollary. For a polyhedron P ⊆ Rn and k ≥ 0, define kP as the set of all points of the form

∑
p∈P λpp

where λ ∈ RP
≥0 and 1>λ = k. Here, 1 denotes the all-ones vector of appropriate dimension. P has the

integer decomposition property if for every integer k ≥ 1, every integral point in kP can be written as
the sum of k integral points in P . We need the following preliminary.
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Theorem 6.1 ([ACLS25]). Let P ⊆ Rn be a pointed polyhedron with the integer decomposition
property, whose affine hull is of the form {x : Ax = b} for A ∈ Zm×n, b ∈ Zm such that m ≥ 1,
b 6= 0, and gcd{bi : i ∈ [m]} = 1. Then P ∩ Zn contains an integral basis for lin(P ).

We are now ready to prove the Integral Basis Theorem.

Proof of Theorem 1.2. We prove this by induction on |V |. Let P := P (G).

Base case. Suppose G is BvN. We claim that P has the integer decomposition property. To this end,
let x ∈ kP ∩ ZE for some integer k ≥ 1, that is, x ∈ ZE

≥0 and x(δ(v)) = k, ∀v ∈ V . If k = 1, then
x is the incidence vector of a perfect matching. Otherwise, as 1

kx ∈ P and P is an integral polytope,
we can express 1

kx as a convex combination of the vertices of P , each of which is an incidence vector
of a perfect matching of G. In particular, there is a perfect matching M such that 1M ≤ x, where
1M ∈ {0, 1}E is the incidence vector of M ⊆ E. Let x′ := x − 1M , which satisfies x′ ∈ ZE

≥0 and
x′(δ(v)) = k − 1, ∀v ∈ V . By repeating this argument, we obtain a description of x as the sum of
k vectors, each of which is an incidence vector of a perfect matching of G. Subsequently, P has the
integer decomposition property. As G is matching-covered, the affine hull of P is {x : x(δ(v)) =
1, ∀v ∈ V }. Given that the GCD of the right-hand side values is 1, it follows from Theorem 6.1 that
P ∩ ZE contains an integral basis for lin(P ), as required.

Tight cuts. Suppose there is a tight cut C. Let G1, G2 be the C-contractions of G, both of which are
Petersen-free matching-covered graphs. By the induction hypothesis, for each i ∈ [2], lin(P (Gi)) has
an integral basis Bi that consists solely of the incidence vectors of some perfect matchings of Gi. Let
B := B1 � B2 which is a subset of ZE consisting of incidence vectors of some perfect matchings of
G that intersect C just once, and is an integral basis for lin(P (G;C)), by 4.1, part (3). Given that C is
a tight cut, it follows that P (G;C) = P , thus completing the induction step.

Non-BvN brick. Otherwise, G is a non-BvN non-Petersen brick. By the Intersection Theorem, there
exist a separating facet-defining cut C = δ(X) and a perfect matching M such that |C ∩M | = 3. Let
G1 := G/X and G2 := G/X̄ , both of which are near-bricks, by 4.5, part (3).

Suppose in the first case that both G1, G2 are Petersen-free. Then by the induction hypothesis, for
each i ∈ [2], lin(P (Gi)) has an integral basis Bi that consists solely of the incidence vectors of some
perfect matchings of Gi. Let B′ := B1 � B2 which is a subset of ZE consisting of incidence vectors
of some perfect matchings of G that intersect C just once, and is an integral basis for lin(P (G;C)),
by 4.1, part (3). We claim that B := B′ ∪ {1M} is an integral basis for lin(P ). Linear independence
is clear as |M ∩ C| > 1 while b(C) = 1 for all b ∈ B′. Given that dim(P ) = dim(P (G;C)) + 1, it
therefore follows that B is a basis for lin(P ). It remains to prove that B is an integral basis. To this
end, let z ∈ lin(P )∩ZE , and express this vector as a unique linear combination of B: z =

∑
b∈B αbb.

We need to show that αb ∈ Z for all b ∈ B.
First we show that αM := α1M is an integer. As z ∈ lin(P ), it follows that z(δ(u)) = z(δ(v)) for

all u, v ∈ V . Let c := z(δ(v)) ∈ Z. Recall that C = δ(X) for an odd-sized X ⊂ V . We have

|X| · c =
∑
v∈X

z(δ(v)) = z(C) + 2z(E[X]),
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so c ≡ z(C) (mod 2). Given v ∈ V , we have c = z(δ(v)) =
∑

b∈B αbb(δ(v)) =
∑

b∈B αb, as each
b ∈ B is the incidence vector of a perfect matching. Thus, as b(C) = 1 for all b ∈ B′ and |M∩C| = 3,

z(C) =
∑
b∈B

αbb(C) = 2αM +
∑
b∈B

αb = 2αM + c.

Hence, 2αM = z(C)− c, which is an even integer. Subsequently, αM ∈ Z.
Thus, z − αM1M is an integral vector in lin(B′), so given that B′ is an integral basis for its linear

hull, it follows that αb ∈ Z for all b ∈ B′, as desired.
Suppose in the remaining case that (at least) one of G1, G2, say G2 = G/X̄ , has a Petersen brick.

We will adjust our choice of C so that we fall in the previous case.
We may assume that the near-brick G2 is a Petersen brick. If not, then choose a minimal subset

Z ⊂ X such that δ(Z) is a tight cut of G/X̄ . In particular, P (G;C) ⊆ P (G; δ(Z)). As G is a
brick, δ(Z) is not tight in G, so δ(Z) and C define the same facet of P , so they are equivalent cuts
and G/Z/X̄ is bipartite, by 4.8. This, together with our minimal choice of Z, implies that G/Z̄ is a
brick. Subsequently, by changing C = δ(X) to an equivalent cut if necessary, we may assume G2 is a
Petersen brick.

Let Y ⊂ X be the vertex set of a 5-cycle of G2. We claim that δ(Y ) is a separating facet-defining
cut of G whose cut-contractions are Petersen-free.

Given that δ(Y ) is separating in G2 and δ(X) is separating in G, it follows that δ(Y ) is separating
in G.

To argue that δ(Y ) is facet-defining for G, note first that the perfect matching M can be redefined
inside G[X], if necessary, such that |M ∩ δ(Y )| = 1. Secondly, by 4.1, part (4) and 4.9, there ex-
ist perfect matchings M1, . . . ,Md whose incidence vectors belong to P (G;C) and form a basis for
lin(P (G;C)), where |M1 ∩ δ(Y )| = 5, |Mi ∩ δ(Y )| = 1 for i ∈ {2, . . . , d}, and every edge of G be-
longs to one ofM2, . . . ,Md. By swappingM1 withM , we obtain d perfect matchingsM,M2, . . . ,Md

whose incidence vectors belong to P (G; δ(Y )) and are linearly independent, because |M ∩ C| = 3
while |Mi ∩ C| = 1 for i ∈ {2, . . . , d}. Thus, P (G; δ(Y )) is a facet of P .

Finally, for each i ∈ [2], the near-brick Gi must be Petersen-free because it contains a triangle, and
such a triangle also belongs to the unique brick of Gi.

We are now ready to prove the Main Theorem.

Proof of Theorem 1.1. We proceed by induction on |V |. For the base case, suppose G is a brick. If G
is a non-Petersen brick, then the result follows from Theorem 1.2. Otherwise, G is a Petersen brick,
and the result can be readily checked.

For the induction step, suppose C is a tight cut of G, and let G1, G2 be the C-contractions, where
G1 has Petersen bricks H1, . . . ,Hq, and G2 has Petersen bricks Hq+1, . . . ,Hp, obtained through tight
cut decompositions of G1, G2, respectively. Let Li := L(Gi) and L̄i := lin(P (Gi)) ∩ ZE(Gi), for
i ∈ [2]. By the induction hypothesis, Li has a lattice basis Bi consisting solely of some perfect
matchings of Gi, for i = 1, 2. Furthermore,

L1 = L̄1 ∩ {x : x(Ai) ≡ 0 (mod 2), i = 1, . . . , q} ,
L2 = L̄2 ∩ {y : y(Ai) ≡ 0 (mod 2), i = q + 1, . . . , p} ,

where each Ai is the edge set of some 5-cycle of Hi. Let B := B1 � B2, which clearly consists of
some perfect matchings of G. By 4.1, part (2), B is a lattice basis for L. Furthermore, we claim that
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the above set equalities imply

L = L̄ ∩ {z : z(Ai) ≡ 0 (mod 2), ∀i ∈ [p]} .

(⊆) is clear. (⊇): Pick f ∈ L̄ such that f(Ai) ≡ 0 (mod 2), ∀i ∈ [p]. Then f = x�y for x ∈ L̄1 and
y ∈ L̄2, where clearly x(Ai) ≡ 0 (mod 2), i = 1, . . . , q and y(Ai) ≡ 0 (mod 2), i = q + 1, . . . , p.
Thus, x ∈ L1, y ∈ L2, so f belongs to L, by 4.1, part (2). This completes the induction step.
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A Details about the composition procedure

Let us provide a proof of 4.1, parts (1)-(3). Our proof is very similar, and at times identical, to that
of ([ACLS25], Lemma 5.1). First, it is clear from the construction that B ⊆ P (G;C) ∩ {0, 1}E , and
|B| = |B1|+ |B2| − |C|. We need the following two claims.

A.1. B is linearly independent.

Proof of A.1. To prove the linear independence of B, suppose
∑

e,i λ
e
i z

e
i = 0 for some λei ∈ R for all

e ∈ C, 1 ≤ i ≤ |Ie| + |Je| − 1. Fix e ∈ C with Ie = {i1, . . . , ik} and Je = {j1, . . . , j`}. Given that
B1 is linearly independent, then for each xit , the sum of the coefficients of vectors in B of the form
xit � y for some y, must be 0. Subsequently, we have∑̀

i=1

λei = 0 (1)

λe`+1 = · · · = λe`+k−1 = 0 (2)

where (1) computes the coefficient for xi1 � y, while (2) computes the coefficients for xit � y, t =
2, . . . , k. Similarly, given that B2 is linearly independent, for each yjt , the sum of the coefficients of
vectors in B of the form x� yjt for some x, must be 0. Subsequently, we obtain that

`+k−1∑
i=`

λei = 0 (3)
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λe2 = · · · = λe` = 0 (4)

where (3) computes the coefficient for x � yj1 , while (4) computes the coefficients for x � yjt , t =
2, . . . , `. Observe that (1) and (4) imply that λe1 = 0, so together with (2), we obtain that λei = 0 for all
1 ≤ i ≤ k + `− 1. As this holds for all e ∈ C, λei = 0 for all e ∈ C, 1 ≤ i ≤ |Ie|+ |Je| − 1. ♦

A.2. If x is an (integer) linear combination of the vectors in B1 and y of B2, where xe = ye, ∀e ∈ C,
then x� y is an (integer) linear combination of the vectors in B.

Proof of A.2. Suppose x =
∑

i α(xi)xi and y =
∑

j β(yj)yj for real numbers α(xi) and β(yj). Fix
e ∈ C with Ie = {i1, . . . , ik} and Je = {j1, . . . , j`}. Now choose λei for all 1 ≤ i ≤ k + ` − 1 such
that

∑̀
i=1

λei = α(xi1) (5)

λe`+t−1 = α(xit) t = 2, . . . , k (6)
λet = β(yjt) t = 2, . . . , `. (7)

(6) and (7) give us the values for λet , t = 2, . . . , `+ k − 1. Furthermore, (5) and (7) give us

λe1 = α(xi1)−
∑̀
t=2

β(yjt).

Since xe = ye, it can be readily checked that α(xi1)−
∑`

t=2 β(yjt) = β(yj1)−
∑k

t=2 α(xit), so

`+k−1∑
i=`

λei = β(yj1). (8)

It follows from (5)-(8) that x � y =
∑

e,i λ
e
i z

e
i . Observe that if the α(xi) and β(yj) are integral, then

so are λet , t = 1, 2, . . . , `+ k − 1. ♦

Let f ∈ P (G;C) ∩ {0, 1}E . Then f = x � y where x ∈ P (G1) ∩ {0, 1}E(G1), y ∈ P (G2) ∩
{0, 1}E(G2). As Bi is a basis for lin(P (Gi)) for i ∈ [2], it follows that x (y) is a linear combination
of the vectors in B1 (B2), so by A.2, f = x � y is a linear combination of the vectors in B. This,
together with A.1, implies that B is a basis for lin(P (G;C)), thus finishing the proof for 4.1, part (1).
Furthermore, if Bi is a lattice basis for L(Gi) for i ∈ [2], then x (y) is an integer linear combination of
the vectors in B1 (B2), so by A.2, f = x � y is an integer linear combination of the vectors in B. In
this case, B is a lattice basis for the lattice generated by P (G;C) ∩ {0, 1}E , in turn proving 4.1, part
(2).

Finally, assume that Bi is an integral basis for lin(P (Gi)) for i ∈ [2]. Take f ∈ lin(B) ∩ ZE .
Observe that f = x� y, where x ∈ lin(B1) ∩ ZE(G1) and y ∈ lin(B2) ∩ ZE(G2). As Bi is an integral
basis, x (y) must be an integer linear combination of the vectors in B1 (B2), so by A.2, f = x � y is
an integer linear combination of the vectors in B. Thus, B is an integral basis for its linear hull, in turn
proving 4.1, part (3).
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