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Last time we stated the following theorem. Let us prove it.

Theorem 8.2 (Matrix-Tree Theorem). Let G be an n-vertex graph, and let L be its Laplacian matrix. Then

T (G) is equal to the determinant of any (n− 1)× (n− 1) principal submatrix of L.

Proof. We shall proceed by induction on the number of edges of G. If G has no edge, then T (G) = 0, and since

L is the zero matrix, the result follows. If n = 2, given that G has m parallel edges between the two vertices, we

have T (G) = m, so the result follows since L =
(

m −m
−m m

)
. For the induction step, assume that G has at least

one edge, and n ≥ 3. For i ∈ [n], denote by L[i] the principal submatrix of L obtained after removing row i and

column i. It suffices to prove that det(L[n]) = T (G).

IfG is not connected, then Proposition 7.5 implies that L has rank at most n−2, so L[n] is a singular matrix,

implying that det(L[n]) = 0 = T (G).

Otherwise, G is connected. Pick an edge e incident with n, say e = {n− 1, n}. Consider the deletion G \ e
and the contraction G/e. For the latter, denote by n−1 the vertex obtained from identifying n−1, n. Denote by

Ld, Lc the Laplacian matrices of G \ e,G/e, respectively. By the induction hypothesis, T (G \ e) = det(Ld[n])

and T (G/e) = det(Lc[n− 1]). Let us recalculate the two determinants in terms of subdeterminants of L.

First, observe that Lc[n− 1] = L[n][n− 1], so

det(Lc[n− 1]) = det(L[n][n− 1]).

Secondly, observe that Ld, L differ in only four entries, namely, Ld
n−1,n−1 = Ln−1,n−1 − 1, Ld

n,n = Ln,n − 1,

Ld
n−1,n = Ln−1,n + 1 and Ld

n,n−1 = Ln,n−1 + 1. Subsequently, by a Laplace expansion along row n − 1 of

Ld[n], we see that

det(Ld[n]) = det(L[n])− det(L[n][n− 1]).

Consequently,

T (G \ e) + T (G/e) = det(Ld[n]) + det(Lc[n− 1]) = det(L[n]).

By Lemma 8.1, however, the LHS is equal to T (G), so T (G) = det(L[n]), thereby completing the induction

step.

As a consequence, we get a proof of Cayley’s formula:

Corollary 8.3. For every integer n ≥ 2, the number of spanning trees Kn is nn−2.
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Proof. Let L be the Laplacian matrix of Kn. Then L = (n− 1)I − (J − I) = nI − J , where J is the all-ones

matrix. As a result, any (n − 1) × (n − 1) principal submatrix of L is equal to nIn−1 − Jn−1. The spectrum

of this submatrix is 1, n(n−2), implying in turn that it has determinant nn−2. The result now follows from the

Matrix-Tree Theorem.

We also have the following consequence of the Matrix-Tree Theorem:

Theorem 8.4. Let G be a graph, and let λ1 ≤ λ2 ≤ · · · ≤ λn be its Laplacian spectrum. Then

T (G) =
1

n

n∏
i=2

λi.

Proof. Exercise.

For another application of the Matrix-Tree Theorem, see Exercise 6.

9 Extensions to weighted graphs

The Matrix-Tree Theorem has a useful extension to the weighted setting. Let G = (V,E) be a graph. The

Kirchhoff polynomial of G is the following polynomial with variables (xe : e ∈ E):

Kir(G;x) :=
∑

T a spanning tree

∏
e∈T

xe.

Observe that if w ∈ RE is a set of edge weights, then Kir(G;w) computes the sum of the “multiplicative

weights” of the spanning trees. In particular, Kir(G;1) is nothing but the number of spanning trees of the

graph G, i.e. Kir(G;1) = T (G). Much like T (G), the Kirchhoff polynomial has a powerful recursive formula.

Lemma 9.1. For every edge,

Kir(G;x) = xe ·Kir(G/e;xe) + Kir(G \ e;xe),

where xe denotes the vector obtained from x after dropping the coordinate corresponding to e.

Proof. Exercise.

Define L(G, x) to be the matrix whose rows and columns are indexed by the vertices, and whose entries are

defined as follows:

1. for each vertex u, the uu-entry is
∑

(xe : e is an edge incident with u),

2. for adjacent vertices u, v, the uv-entry is −
∑

(xe : e has ends u, v),

3. for non-adjacent vertices u, v, the uv-entry is 0.

Theorem 9.2. Let G be an n-vertex graph, let w ∈ RE , and let Lw := L(G,w). Then Kir(G;w) is equal to

the determinant of any (n− 1)× (n− 1) principal submatrix of Lw.
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Proof. Exercise.

We are now ready to define the Laplacian matrix in a particular weighted setting:

Definition 9.3. Let G = (V,E) be a graph, and let w ∈ RE
+. The Laplacian matrix of the weighted graph

(G,w) is the matrix L(G,w).

Observe that the Laplacian matrix of the weighted graph (G,1) is just the Laplacian matrix of the graph

G. The nonnegativity of the edge weights is needed in order to guarantee the positive semidefinite-ness of the

Laplacian matrix. More generally, we have the following:

Proposition 9.4. Let G = (V,E) be a graph, let w ∈ RE
+, and let Lw be the Laplacian of the weighted graph

(G,w). Then the following statements hold:

1. Lw =
∑

e={u,v}∈E we · (eu − ev)(eu − ev)>,

2. for each x ∈ RV , x>Lwx =
∑

e={u,v}∈E we(xu − xv)2,

3. Lw is a positive semidefinite matrix,

4. 1 is an eigenvector of Lw with eigenvalue 0,

5. if every edge has nonzero weight, then Lw has rank n− c, and 0 as an eigenvalue has multiplicity c, where

c is the number of connected components of G

Proof. Exercise.

In the weighted setting, for all intents and purposes, we may assume that the graph G is simple (i.e. it has no

loops or parallel edges), and every edge has a strictly positive weight. These two assumptions can be made after

deleting all edges of weight zero, and after collapsing all parallel edges to a single edge whose weight is the sum

of the previous weights.

Exercises

1. Prove Proposition 7.2.

2. Recall the cospectral pair of graphs from Lecture 1, displayed in Figure 1. Find the Laplacian spectrum of

each graph. Then conclude that cospectral graphs may not necessarily have the same Laplacian spectra.

3. Let G be an n-vertex simple graph, and let G be its complement. Prove the following statements:

(a) λi(G) = n− λn−i+2(G) for 2 ≤ i ≤ n,

(b) λn(G) ≤ n,

(c) if G has c connected components, and c ≥ 2, then λn(G) = n and its multiplicity is c− 1.
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Figure 1: Two cospectral graphs with different Laplacian spectra.

4. Let G = (V,E) be a connected graph, let λ2 := λ2(G), and let f ∈ RV be a corresponding eigenvector.

(a) Call a path (u1, . . . , ur) strictly decreasing if fu1
> · · · > fur

. Prove that if fu > 0, then it is joined

by a strictly decreasing path to some vertex v such that fv ≤ 0.

(b) Prove that for any c ≤ 0, the graph induced on the vertex set {v ∈ V : fv ≥ c} is connected.

5. Prove Theorem 8.4.

6. Let M be an n × n, and let C be its cofactor matrix. Recall that C is an n × n matrix whose ij-entry is

(−1)i+j times the determinant of the submatrix of M obtained after removing row i and column j. By a

Laplace expansion along any row of M , we get the matrix equation C>M = det(M)I . The matrix C> is

called the adjugate of M , and denoted adj(M).

Let G be a graph, and let L be its Laplacian matrix. Prove that every entry of adj(L) is equal to T (G).

7. Prove Lemma 9.1.

8. Prove Theorem 9.2.

9. Prove Proposition 9.4.

10. Let G be a connected graph on n vertices. Prove that

λ2(G) = min
x

n
∑

ij∈E(xi − xj)2∑
i<j(xi − xj)2

where the minimum is taken over all non-constant vectors x.

11. Let T be a tree. Prove that λ2(T ) ≤ 1, and equality holds if and only if T is a star.

12. The Cartesian product of two graphsG,H , denotedG�H , is the graph over vertex set V (G)×V (H), where

(u1, u2) and (v1, v2) are adjacent if u1 = v1 and u2, v2 are adjacent in H , or u2 = v2 and u1, v1 are adjacent

in G.

Prove that λ2(G�H) = min{λ2(G), λ2(H)}.

13. Denote by Qn the skeleton graph of the n-dimensional unit hypercube. Prove that λ2(Qn) = 2.

14. Let G be a connected graph on n vertices and with diameter d. Prove that λ2(G) ≥ 1
nd .
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15. Let L1, L2 be positive semidefinite matrices of the same dimensions such that L1 < L2. Prove that the kth

largest eigenvalue of L1 in its spectrum is greater than or equal to the kth largest eigenvalue of L2 in its

spectrum.

16. Let (G,w), (H,w′) be weighted graphs on the same number of vertices and with positive edge weights. Let

L1, L2 be the Laplacian matrices of (G,w), (H,w′), respectively. We write (G,w) < (H,w′) if L1 < L2.

Prove that

(Pn, (n− 1)1) < (An,1)

where the weighted graph on the left is the path on vertices {1, 2, . . . , n} with edges {1, 2}, {2, 3}, . . . , {n−
1, n}, whose weights are equal to n− 1, and the weighted graph on the right is the graph on the same vertex

set with just one edge, {1, n}, whose weight is 1.

17. (a) Prove that λ2(Kn) = n.

(b) Prove that λ2(Pn) ≥ 6
(n+1)(n−1) .

10 The cut and cycle spaces

Let G = (V,E) be a connected undirected graph with n vertices and m edges, and let
→
G = (V,

→
E) be any

orientation of G. The arbitrariness of the orientation may be a bit disconcerting, but everything we discuss will

in fact be insensitive to the choice of orientation (just as was the case when we used it to give one definition of the

Laplacian). We will often make use of the natural bijection between
→
E and E without comment; so for example,

we will generally treat RE and R
→
E as the same space. We will also define

↔
G = (V,

↔
E) to be the bidirection of

G, where each edge is replaced by both orientations.

Throughout, we will use B to denote the vertex-edge incidence matrix associated with
→
G. That is, B ∈

RV×
→
E ' RV×E , with

Bv,e =


1 if v is the head of e,

−1 if v is the tail of e,

0 otherwise.

A flow on G (or on
→
G; we won’t distinguish) is simply any vector f ∈ RE (or in R

→
E—again, we won’t

distinguish). Note that we do not require that fe ≥ 0 in a flow. While a positive flow on an edge (u, v) ∈
→
E

should be interpreted as flow from u to v, a negative flow on this edge should be interpreted as flow in the reverse

direction, from v to u. The purpose of an orientation is purely to indicate in which direction on an undirected

edge a positive flow traverses.

The net flow into a node v ∈ V induced by a flow f ∈ RE is simply the total entering flow less the total

leaving flow. We define ∇ to be the operator from RE to RV which maps a flow f to the vector b, where bv is
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the net flow into v for each v ∈ V . That is,

(∇f)v =
∑

e=(u,v)∈
→
E

fe −
∑

e=(v,w)∈
→
E

fe.

In the standard basis, the matrix representing ∇ is simply B. We will often write ∇fv in place of (∇f)v , as

there can be no confusion.

A circulation is simply a flow f with∇fv = 0 for all v ∈ V . More generally, given a demand vector b ∈ RV

with
∑

v∈V bv = 0, we might be interested in flows which correctly match this demand vector, i.e., which satisfy

∇f = b.

We will need some notation. Define, for any edge e ∈
↔
E, the vector χe ∈ RE by

(χe)a =


1 if a = e,

−1 if the reverse of a is e,

0 otherwise.

This is a signed characteristic vector of the edge e. For any F ⊆
↔
E, define χ(F ) :=

∑
e∈F χ

e. Given a set

S ⊆ V , with S 6= ∅ and S 6= V , the cut associated with S, denoted by δ+(S), is the set of arcs (v, w) ∈
↔
E with

v ∈ S and w /∈ S.

We now define two subspaces of RE . The subspaces do depend on the choice of orientation, but again, not

in any important way.

The cycle space W � is the set of all circulations in G, that is,

W � := {f ∈ RE : ∇f = 0}.

We define the cut space (sometimes called the star space) as simply the orthogonal complement of W �, and

denote it by W ?: so W ? = (W �)⊥, and W � ⊕W ? = RE . The reason for the names will become clear soon.

First, let’s see an alternative description ofW �, as well as a description of one possible basis. A reminder that

given a spanning tree T 1 of G, every edge e not in T has an associated fundamental cycle, the cycle consisting

of e along with the path in T between the endpoints of e. We will consider this as a directed cycle in
↔
G, oriented

so that e is included in the forward direction. There is also the fundamental cut associated with any edge e ∈ T :

removing e from T splits it into two connected components, partitioning V into Se, V \ Se, where Se contains

the tail of e; the fundamental cut is δ+(Se).

Lemma 10.1. The following statements about W � hold.

1. W � = span({χ(C) : C is a directed cycle in
↔
G}).

2. Given any spanning tree T , and taking Ce to be the fundamental cycle associated with e for each e /∈ T ,

{χ(Ce) : e ∈ E \ T} is a basis for W �.

1We will not distinguish between a spanning tree and its set of edges.
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3. dim(W �) = m− n+ 1.

Proof. For any directed cycle C in
↔
G, ∇(χ(C)) = 0, and hence χ(C) ∈ W �. Since Ce does not contain e′

for any e 6= e′ ∈ E \ T , {χ(Ce) : e ∈ E \ T} is certainly linearly independent. It remains to show that

dim(W �) = m − n + 1; since a spanning tree has n − 1 edges, it then follows that {χ(Ce) : e ∈ E \ T} is

indeed a basis, and so all parts of the lemma follow.

W � is the kernel of the ∇ operator, and so it suffices to show that the rank of this operator, or equivalently

the rank of B, is n− 1. We show this by demonstrating that the kernel of B> is 1-dimensional. If B>α = 0, we

must have that αu = αv for every {u, v} ∈ E, and hence by the connectivity of G, α is a multiple of 1. Further,

clearly B>1 = 0.

Now we move on to the cut space, which will in fact be the more important subspace for us. Both names (cut

space as well star space) should become clear after this lemma.

Lemma 10.2. The following statements about W ? hold.

1. W ? = span({χ(δ+(S)) : ∅ ( S ( V }).

2. W ? = span({χ(δ+({r})) : r ∈ V }).

3. Given any spanning tree T , and taking δ+(Se) to be the fundamental cut associated with e for each e ∈ T ,

{χ(δ+(Se)) : e ∈ T} is a basis for W ?.

4. {χ(δ+({r})) : r ∈ V \ {t}} is a basis, for any choice of t ∈ V .

5. dim(W ?) = n− 1.

Proof. Exercise.

The grad operator (the gradient) is a linear map from RV to RE ; for any π ∈ RV , f = gradπ is defined by

fe = πw − πv for every e = (v, w) ∈
→
E. The matrix of this linear operator in the standard basis is simply B>.

As such, ∇ and grad are adjoint operators: 〈∇f, π〉 = 〈f, gradπ〉.

Lemma 10.3. The range of grad is precisely W ?.

Proof. W � is the kernel of the∇ operator. Thus W ? = (W �)⊥ is the range of the adjoint operator grad.

We have the following relation to the Laplacian of G, which we will denote by L throughout.

Lemma 10.4. The linear operator which is represented by L in the standard basis is precisely∇ grad.

Proof. In the standard basis, ∇ grad = BB>, which we already saw was one possible definition of the Lapla-

cian.
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Remark 10.5. The Laplacian is also used to describe a differential operator. Given an appropriately smooth

real-valued function g : Rk → R, the Laplacian of g is written as∇2g; it is a map from Rk to R defined by

∇2g =

k∑
i=1

∂2g

∂x2i
.

It can be viewed as first computing the gradient of g (often denoted by∇g), which is

h = ∇g =

(
∂g

∂x1
,
∂g

∂x2
, . . . ,

∂g

∂xk

)
,

and then taking the divergence of h (often denoted by∇ · h), which is

∇ · h =

k∑
i=1

∂hi
∂xi

.

In our discrete setting, we have exactly the same description of the Laplacian, as the divergence of the gradient2.

The analogy is particularly clear if you consider the graph G describing a grid in k dimensions.

2We cannot get away with overloading ∇ for both the gradient and the divergence in the discrete setting without causing unnecessary

confusion, so we use it only for the divergence.
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