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4.3 Hall’s theorem for balanced hypergraphs
Recall the following two lemmas from the last lecture:

Lemma 4.7. Let A be an m X n balanced matrix. Then the polyhedron
P={x,5,t>0: Az +Is— It =1}
is integral.

Lemma 4.8. Let A be a balanced matrix. Then the linear system x,s,t > 0, Ax + Is — It = 1 is totally dual

integral.
We are now ready to prove the following generalization of Hall’s Theorem 4.6 for balanced hypegraphs:

Theorem 4.9 (Conforti, Cornuéjols, Kapoor, Vuskovi¢ 1996). Let G = (V, E) be a balanced hypergraph. Then

the following statements are equivalent:
e ( has no perfect matching,

e there are disjoint vertex sets R, B such that |R| > | B| and for every edge e,

eNB| > leNR)|
Proof. (<) Suppose for a contradiction that G has a perfect matching eq, . . ., ex. Then
k k
|Rl=) leiNRI <) leiNB|=|B| <R,
i=1 i=1

a contradiction. (=) Suppose G has no perfect matching. Let A be the vertex-edge incidence matrix of G.

Notice that A is a balanced matrix. Consider the linear program

max 0"z—-1Ts—1T¢
(P) s.t. Ar+Is—Tt=1
z,s5,t >0

Since G has no perfect matching, (P) has no integer feasible solution of value > 0. It therefore follows from

Lemma 4.7 that the optimal value of (P) is < 0. As a result, by Lemma 4.8, the dual program has an integral



feasible solution of negative value, that is, there is an integral point ¢ such that

lTy<0

ATyZO
y<1
y=-—1

Let B:={veV:g,=1}and R :={v € V : 5, = —1}. Clearly, BN R = (). The first inequality implies
that |R| > | B| while the second inequality implies that, for each edge e, |e N B| > |e N R, as required. O

This result has a nice Kénig-type consequence. Given a hypergraph, the degree of a vertex is the number of

edges containing that vertex. For an integer d > 1, a hypergraph is d-regular if every vertex has degree d.

Corollary 4.10. The edges of a balanced hypergraph with maximum degree d can be partitioned into d match-

ings.

Proof. Let G = (V, E) be a balanced hypergraph with maximum degree d > 1. Let us first prove the result for
d-regular hypergraphs:

Claim 1. If G is d-regular, then its edges can be partitioned into d perfect matchings.

Proof of Claim. We prove this by induction on d > 1. The base case d = 1 is obvious. Assume that d > 2. Let
us use Theorem 4.9 to find a perfect matching in G. Take disjoint vertex subsets R, B of V' such that for every
edge e, [eN B| > |eN R|. Then
d-|B|=>1enB|>> |enR|=d-|R]
e€E c€E

implying in turn that |B| > |R)|. It therefore follows from Theorem 4.9 that G has a perfect matching M, C E.
Notice that G\ M, is (d — 1)-regular, so by the induction hypothesis, the edges of G \ M can be partitioned into
d — 1 perfect matchings M, ..., My_1. Together with M, we get a partition of the edges of GG into d perfect

matchings, thereby completing the induction step. O
Claim 2. There is a d-regular balanced hypergraph H = (V, E’) such that E C E'.

Proof of Claim. To obtain H, for every vertex v of G, add d — deg(v) edges of the form {v}. It is clear that H
is a d-regular hypergraph. It is easy to see that H is a balanced hypergraph. O

By Claim 1, the edges of H can be partitioned into d perfect matchings. It is easy to see that this corresponds to

a partition of the edges of GG into d matchings, thereby finishing the proof. O
In particular,

Theorem 4.11 (Konig 1931). Let G be a loopless bipartite graph of maximum degree d. Then the edges of G

can be partitioned into d matchings, that is, G can be d-edge-colored.



S Perfect graphs

Let G = (V, E) be a simple graph. Denote by x(G) the minimum number of stable sets needed to cover V.
Notice that x (G) records the chromatic number of G, i.e. the minimum number of colors needed for a vertex-
coloring. Denote by w((G) the maximum cardinality of a clique. Since the vertices of a clique get different colors
in any vertex-coloring, it follows that

X(G) > w(@).

Denote by G the complement of G, that is, G has vertex set V where distinct vertices u, v are adjacent in G if
they are non-adjacent in G. Notice that the cliques and stable sets of G are precisely the stable sets and cliques
of G.

Remark 5.1. Let G = (V, E) be a simple graph. Then
0(G) == x(G)
is the minimum number of cliques of G needed to cover V, and
a(G) = w(@)
is the maximum cardinality of a stable set. In particular, 0(G) > o(G).

Recall the following two theorems from Assignment 1:

Theorem 5.2 (Koénig 1931). In a loopless bipartite graph, the minimum cardinality of a vertex cover is equal to

the maximum cardinality of a matching.

Theorem 5.3. In a partially ordered set, the minimum number of antichains needed to cover the ground set is

equal to the maximum cardinality of a chain.

We will need this result moving forward, as well as a few notions. The line graph of a simple graph G is the
graph on vertex set E(G) where distinct e, f € E(G) are adjacent if e, f share a vertex of G. Given a partially
ordered set (V, <), its comparability graph is the graph on vertex set V' where distinct u, v € V are adjacent if
they are comparable.

The main theme of this section is, when does equal hold in x > w?
Theorem 5.4. x(G) = w(G) if G is any of the following graphs:
(1) G or G is bipartite,
(2) G or G is the line graph of a bipartite graph,

(3) G or G is a comparability graph.



Proof. (1) Let G be a bipartite graph. Then x(G) = 2 = w(G). We need to show that §(G) = a(G). Clearly,
a(G)=|V|—-k

where k is the minimum cardinality of a vertex cover. Since G is bipartite,
0(G)=|V]|—-m

where m is the maximum cardinality of a matching. By Theorem 5.2, m = k, implying in turn that (G) =
a(@), as required. (2) Let G be the line graph of a bipartite graph H. Observe that the stable sets and cliques of
G are in correspondence with the matchings and stars of H, respectively. Thus x(G) is equal to the minimum
number of colors needed in an edge-coloring of H, while w(G) is equal to the maximum degree of a vertex
of H. It therefore follows from Theorem 4.11 that x(G) = w(G). Moreover, §(G) is equal to the minimum
cardinality of a vertex cover, while o(G) is equal to the maximum cardinality of a matching. So by Theorem 5.2,
0(G) = a(G). (3) Let G = (V, E) be the comparability graph of a partially ordered set (V, <). Then the cliques
and stable sets of G are in correspondence with the chains and antichains of (V, <). It therefore follows from
Theorem 1.2 that §(G) = «(G), and it follows from Theorem 5.3 that x (G) = w(G). O



