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4.3 Hall’s theorem for balanced hypergraphs

Recall the following two lemmas from the last lecture:

Lemma 4.7. Let A be an m× n balanced matrix. Then the polyhedron

P = {x, s, t ≥ 0 : Ax+ Is− It = 1}

is integral.

Lemma 4.8. Let A be a balanced matrix. Then the linear system x, s, t ≥ 0, Ax+ Is− It = 1 is totally dual

integral.

We are now ready to prove the following generalization of Hall’s Theorem 4.6 for balanced hypegraphs:

Theorem 4.9 (Conforti, Cornuéjols, Kapoor, Vus̆ković 1996). Let G = (V,E) be a balanced hypergraph. Then

the following statements are equivalent:

• G has no perfect matching,

• there are disjoint vertex sets R,B such that |R| > |B| and for every edge e, |e ∩B| ≥ |e ∩R|.

Proof. (⇐) Suppose for a contradiction that G has a perfect matching e1, . . . , ek. Then

|R| =
k∑

i=1

|ei ∩R| ≤
k∑

i=1

|ei ∩B| = |B| < |R|,

a contradiction. (⇒) Suppose G has no perfect matching. Let A be the vertex-edge incidence matrix of G.

Notice that A is a balanced matrix. Consider the linear program

(P )

max 0>x− 1>s− 1>t

s.t. Ax+ Is− It = 1

x, s, t ≥ 0

Since G has no perfect matching, (P) has no integer feasible solution of value ≥ 0. It therefore follows from

Lemma 4.7 that the optimal value of (P) is < 0. As a result, by Lemma 4.8, the dual program has an integral
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feasible solution of negative value, that is, there is an integral point ȳ such that

1>y < 0

A>y ≥ 0

y ≤ 1

y ≥ −1

Let B := {v ∈ V : ȳv = 1} and R := {v ∈ V : ȳv = −1}. Clearly, B ∩ R = ∅. The first inequality implies

that |R| > |B| while the second inequality implies that, for each edge e, |e ∩B| ≥ |e ∩R|, as required.

This result has a nice Kőnig-type consequence. Given a hypergraph, the degree of a vertex is the number of

edges containing that vertex. For an integer d ≥ 1, a hypergraph is d-regular if every vertex has degree d.

Corollary 4.10. The edges of a balanced hypergraph with maximum degree d can be partitioned into d match-

ings.

Proof. Let G = (V,E) be a balanced hypergraph with maximum degree d ≥ 1. Let us first prove the result for

d-regular hypergraphs:

Claim 1. If G is d-regular, then its edges can be partitioned into d perfect matchings.

Proof of Claim. We prove this by induction on d ≥ 1. The base case d = 1 is obvious. Assume that d ≥ 2. Let

us use Theorem 4.9 to find a perfect matching in G. Take disjoint vertex subsets R,B of V such that for every

edge e, |e ∩B| ≥ |e ∩R|. Then

d · |B| =
∑
e∈E
|e ∩B| ≥

∑
e∈E
|e ∩R| = d · |R|,

implying in turn that |B| ≥ |R|. It therefore follows from Theorem 4.9 that G has a perfect matching Md ⊆ E.

Notice thatG\Md is (d−1)-regular, so by the induction hypothesis, the edges ofG\Md can be partitioned into

d − 1 perfect matchings M1, . . . ,Md−1. Together with Md, we get a partition of the edges of G into d perfect

matchings, thereby completing the induction step. ♦

Claim 2. There is a d-regular balanced hypergraph H = (V,E′) such that E ⊆ E′.

Proof of Claim. To obtain H , for every vertex v of G, add d− deg(v) edges of the form {v}. It is clear that H

is a d-regular hypergraph. It is easy to see that H is a balanced hypergraph. ♦

By Claim 1, the edges of H can be partitioned into d perfect matchings. It is easy to see that this corresponds to

a partition of the edges of G into d matchings, thereby finishing the proof.

In particular,

Theorem 4.11 (Kőnig 1931). Let G be a loopless bipartite graph of maximum degree d. Then the edges of G

can be partitioned into d matchings, that is, G can be d-edge-colored.
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5 Perfect graphs

Let G = (V,E) be a simple graph. Denote by χ(G) the minimum number of stable sets needed to cover V .

Notice that χ(G) records the chromatic number of G, i.e. the minimum number of colors needed for a vertex-

coloring. Denote by ω(G) the maximum cardinality of a clique. Since the vertices of a clique get different colors

in any vertex-coloring, it follows that

χ(G) ≥ ω(G).

Denote by G the complement of G, that is, G has vertex set V where distinct vertices u, v are adjacent in G if

they are non-adjacent in G. Notice that the cliques and stable sets of G are precisely the stable sets and cliques

of G.

Remark 5.1. Let G = (V,E) be a simple graph. Then

θ(G) := χ(G)

is the minimum number of cliques of G needed to cover V , and

α(G) := ω(G)

is the maximum cardinality of a stable set. In particular, θ(G) ≥ α(G).

Recall the following two theorems from Assignment 1:

Theorem 5.2 (Kőnig 1931). In a loopless bipartite graph, the minimum cardinality of a vertex cover is equal to

the maximum cardinality of a matching.

Theorem 5.3. In a partially ordered set, the minimum number of antichains needed to cover the ground set is

equal to the maximum cardinality of a chain.

We will need this result moving forward, as well as a few notions. The line graph of a simple graph G is the

graph on vertex set E(G) where distinct e, f ∈ E(G) are adjacent if e, f share a vertex of G. Given a partially

ordered set (V,≤), its comparability graph is the graph on vertex set V where distinct u, v ∈ V are adjacent if

they are comparable.

The main theme of this section is, when does equal hold in χ ≥ ω?

Theorem 5.4. χ(G) = ω(G) if G is any of the following graphs:

(1) G or G is bipartite,

(2) G or G is the line graph of a bipartite graph,

(3) G or G is a comparability graph.
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Proof. (1) Let G be a bipartite graph. Then χ(G) = 2 = ω(G). We need to show that θ(G) = α(G). Clearly,

α(G) = |V | − k

where k is the minimum cardinality of a vertex cover. Since G is bipartite,

θ(G) = |V | −m

where m is the maximum cardinality of a matching. By Theorem 5.2, m = k, implying in turn that θ(G) =

α(G), as required. (2) Let G be the line graph of a bipartite graph H . Observe that the stable sets and cliques of

G are in correspondence with the matchings and stars of H , respectively. Thus χ(G) is equal to the minimum

number of colors needed in an edge-coloring of H , while ω(G) is equal to the maximum degree of a vertex

of H . It therefore follows from Theorem 4.11 that χ(G) = ω(G). Moreover, θ(G) is equal to the minimum

cardinality of a vertex cover, while α(G) is equal to the maximum cardinality of a matching. So by Theorem 5.2,

θ(G) = α(G). (3) Let G = (V,E) be the comparability graph of a partially ordered set (V,≤). Then the cliques

and stable sets of G are in correspondence with the chains and antichains of (V,≤). It therefore follows from

Theorem 1.2 that θ(G) = α(G), and it follows from Theorem 5.3 that χ(G) = ω(G).
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