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10.3 A signed graph without an odd- K5 minor is weakly bipartite.

Recall that a pseudo-odd- K5 is a signed graph (G, E(G)) for which the following statements hold: there exist a
partition of V(@) into parts Sy, S1, Se, S3 and distinct vertices x,y € Sy such that

e there is an edge e € E whose ends are z, y, and for each i € {0, 1,2, 3}, S; is stable in G \ e,
e G\ e has internally vertex-disjoint zy-paths Py, Py, P3, where for each i € [3], V(P;) C Sp U S;,
e for distinct 7, j € [3], G[S; U S;] has a path with one end in V' (P;) and the other in V' (P;).

‘We showed last time that,

Theorem 10.9. A pseudo-odd- K5 has an odd- K5 minor:

Using this result, we will be able to continue with our proof of the following theorem. Our proof is due to
Schrijver (2002).

Theorem 10.10 (Guenin 2001). A signed graph without an odd-Ks minor is weakly bipartite.

Proof. Let (G = (V, E), X) be a signed graph that is not weakly bipartite. We will show that (G, X) has an odd-
K5 minor. To this end, as we argued last time, we may assume that G is connected, and that every proper minor
of (G, X) is weakly bipartite. Let C be the clutter of odd circuits of (G, X). It then follows from Proposition 10.6
that C is a minimally non-ideal clutter. Take an edge ¢ € E. Using Lehman’s Theorem 9.12, we showed the

following last time:

Claim 1. There are minimum odd circuits C, Cs, C3 and minimum signatures By, Bs, Bs such that for distinct

i,7 €3],

(Cl) |C;N B;| > 3and C; N Bj = {e},

(C2) C;NCj ={e} =B;NB;,

(C3) the only odd cycles contained in C; U C; are C;, C},

(C4) the only signatures contained in B; U B; are B;, B;.



Let z, y be the ends of e. For each i € [3], let P, := C; — {e}. Notice that Py, P,, P; are zy-paths that are
(edge-)disjoint by (C2).

Claim 2. For distinct i,j € [3], P; and P; are internally vertex-disjoint xy-paths.

Proof of Claim. Suppose for a contradiction that P;, P, have a vertex v other than x, y in common. Let C' :=
Py [z,v]U Pyv,y] U {e}. Observe that C is a cycle, and because for the signature B3 we have B3 N C' = {e} by
(C1), it follows that C is an odd cycle. However, C' is an odd cycle contained in C7 U C5 that is different from
(4, C3, a contradiction to (C3). Thus, Py, P; are internally vertex-disjoint, and similarly, for distinct 7, j € [3],

P; and P; are internally vertex-disjoint. O

For distinct 4, j € [3], pick U;; € V — {z} such that B;AB; = 6(U;;) — as e ¢ B;ABj, it follows that
Uj €V —{=z,y}.

Claim 3. There are disjoint vertex subsets Uy, Us, Us C V such that for every permutation i, j, k of 1,2, 3,
(C5) Uij =U; U Uj, and

(C6) each edge with an end in U; and the other in U; belongs to By, each edge with an end in Uy, and the other
inV — (U; UUs U Us) also belongs to By, and By, — {e} has no other edges.

Proof of Claim. Observe that
0 = (B1AB2)A(BaAB3)A(BsABy) = 6(U12) A8(Uas3) A6 (Uszy) = §(U12AU23AU31).

As G is connected, and z,y ¢ U2 AUs3AUsy, it follows that U o AUs3 AUs; = (0. This implies that there are
disjoint vertex subsets Uy, Us, Us C V such that U;; = U; U U; for distinct 4, j € [3]. This proves (C5). (C6)
follows from the definition of Uy, Uz, Us and the fact (C2) that By N By = Bo N B3 = B3N By = {e}. O

Claim 4. For every permutation i, j, k of 1,2, 3, we have
(C7) V(P)N(U; UU;) =0and V(P;) NU; # 0, and
(C8) G[U; UUj] is connected.

Proof of Claim. (CT) As P, N B; = P, N By = (), and P; is an xy-path, it follows from (C6) that V (P;) N
(U; U Uk) = 0. Moreover, by (C1), P; N B; # 0, so V(P;) N U; # 0. (C8) Suppose otherwise. Then there is
a non-empty and proper subset U of U; U U; such that 6(U) C §(U; UU;) = §(U;;) = B; AB;. Moreover, as
G is connected, it follows that §(U) is a non-empty and proper subset of B; AB;. Then B; AJ(U) is a signature
contained in B; U Bj, so by (C4), B; A§(U) is either B; or B;, implying in turn that 6(U) is either () or B; ABj,

a contradiction. O



Let B := B1ABy/AB3s = B; U By U Bs. Notice that B is also a signature as B = B1Ad6(Uz U Us), so
(G, B) is aresigning of (G, X). Let H be the graph obtained from G after contracting all the edges in each G[U;]
and each C; — B;, and deleting all the remaining edges outside By U By U Bs. Observe that E(H) = B, and
so (H, E(H)) is a minor of (G, X). For each i € [3], let P/ be an xy-path in P; N B; and let U/ be the vertices
of H corresponding to the vertices U; of G. Let U} := V(H) — (U; U Uj U U}). Notice that Pj, Pj, P} are
internally vertex-disjoint zy-paths of H, that U}, U;, U5, U} form a partition of V (H) into stable sets of H \ e
by (C6), that for each i € [3] we have V(P/) C UjU U] and V(P/) N U] # 0 by (C7), and for distinct i, j € [3],
H[U; U U/] is connected by (C8). In particular, for distinct 4, j € [3], H[U] U U;] contains a path with one end
in V(P;) and the other in V(P7}). As aresult, (H, E(H)) is a pseudo-odd-Ks, so by Theorem 10.9, it has an
0dd- K5 minor, implying in turn that (G, X) has an odd-K5 minor, as required. O

As a consequence, we get the following characterization of weakly bipartite graphs:
Corollary 10.11. Let G = (V, E) be a graph. Then the following statements are equivalent:
(i) G is not weakly bipartite,
(ii) there exist disjoint I, J C E such that J forms a cut of G\ I, and G\ I/J is a K.
Proof. (ii) = (i): Since J forms a cut of G \ I, it follows that
(K5, E(Ks)) = (G\1/J,E(G\1/J)) = (G\L,E(G\1))/J = (G, E(G)\1/J,

so (G, E(G)) has an odd- K5 minor, implying by Remark 10.7 that (G, E(G)), and so G, is not weakly bipartite.
(i) = (ii): It follows that (G, F(G)) is not weakly bipartite, so by Theorem 10.10, there are disjoint I, J C E
such that (K5, E(K5)) = (G,E(G))\I/J. Let H := G\ I. Then (K;,E(K;)) = (H,E(H))/J, so
E(K5) = E(H) — J is a signature of (H, E(H)) disjoint from J. As aresult, J = (E(H) — J)AE(H) isa
cut of H, as required. O

11 Cube-ideal sets

Take an integer n > 1. We will be working over the hypercube {0, 1}". Inequalities of the form
1>z;>0 i € [n]
are called hypercube inequalities. Inequalities of the form
in + Z(l —z;)>1 for disjoint I, J C [n]
i€l jeJ
are called generalized set covering inequalities. Notice that generalized set covering inequalities are precisely
those inequalities that cut off a sub-hypercube of {0, 1}". Take a subset S C {0, 1}". We say that S is cube-ideal

if its convex hull conv(\S) can be described by hypercube and generalized set covering inequalities. When is a

set cube-ideal? This is the theme of this section.



Example. {111,100,010,001} C {0,1}3 is cube-ideal as its convex hull is equal to

£E1+.’E2+.’E3 21
s, 1+ (l—2)+(1-23) >1
’ (1—1’1)+1’2+(1—1’3) 21
(1—%‘1)+(1—I2)+.’L‘3 >1

x € ]0,1]

Given two vectors a, b € {0,1}", let aAb := a+b (mod 2). Given a coordinate i € [n], to twist coordinate
i of S is to replace S by
SNe; :=={zxle; :x € S}.

So to twist coordinate ¢ is to make the change of variables z; — 1 — x;. Since hypercube and generalized set

covering inequalities are closed under this change of variables, it follows that,

Remark 11.1. Take an integer n > 1 and a subset S C {0,1}™. If S is cube-ideal, then so is any set obtained

after twisting some coordinates.

The cuboid of S, denoted cuboid(S), is the clutter over ground set [2n] whose members have incidence
vectors

(1,1 —z1, 20,1 — 29, ..., xpn, 1 — xp) x €S
Notice that {2i — 1, 2i}, i € [n] are covers of cuboid(S), and that every member of cuboid(.S) has cardinality .
Example. The cuboid of {111,100,010,001} C {0, 1}3 has incidence matrix

0 1
0 0
11
10

O O = =
_ o = O
_ o O =
O = = O

which is just the incidence matrix of Qg. Thus, Qg is a cuboid.

We saw that {111, 100,010,001} is cube-ideal, and that its cuboid is QJg, which we know is an ideal clutter. In

fact, we will show next time that in general, a set is cube-ideal if and only if its cuboid is ideal.



