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9.2 The minimally non-ideal clutters different from the deltas, continued

Last time, we proved the following theorem:

Theorem 9.10 (Lehman 1990). Let C be a minimally non-ideal clutter over ground set E that is not a delta, and
let n := |E|. Let z* be a fractional extreme point of {1 > x > 0 : M (C)x > 1}. Then the following statements
hold:

(1) 0 <x* <1,
(2) x* lies on exactly n facets, that correspond to members C1, ...,C, € C —so x* is a simple vertex,

(3) the n neighbors of ©* are integral vertices, that correspond to covers By, ..., By, labeled so that for distinct

i,j S [’I’L], CiﬂBi| > 1and|C’iﬁBj| =1,

(4) Bi,..., B, are minimal covers,
(5) Cy,...,Cy are precisely the minimum cardinality members of C,
(6) x* is the unique fractional extreme point of {1 > x > 0: M(C)x > 1},

(7) there is an integer d > 1 such that for each i € [n),

CiNB;)|=1+d.
In particular, x* is the unique fractional extreme point of {x > 0 : M(C)x > 1}.

Parts (3) and (7) of this theorem lead to square O — 1 matrices whose product is of the form J + dI for an integer
d > 1 — Bridges and Ryser (1969) studied such matrices and proved nice properties about them. For an integer

k > 1, asquare 0 — 1 matrix is k-regular if every row and every column has exactly & ones.

Theorem 9.11 (Bridges and Ryser 1969). Take an integer n > 3, and let A, B be n x n matrices with 0 — 1
entries such that
AB=J+dIl

for some integer d > 1. Then A, B are non-singular matrices that commute
BA=J+dlI,

and for some integers r, s > 2 such that rs = n + d, A is r-regular and B is s-regular.



Proof. As J + dI is non-singular, it follows that both A, B are non-singular matrices. In particular, neither A

nor B has a zero row or a zero column. We have

I=(J+dl) <;I - WJ) = (AB) (;I - WJ) —A <;B - WBJ) :

so Aand 1B — mB J are inverses of one another. Thus,
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BA=——(B1)(A"1)" +dI.
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For each i € [n], denote by s; € {1,2,...,n} the number of ones in row ¢ of B, and by r; € {1,2,...,n} the

number of ones in column ¢ of A. Then the previous equation implies that
(D) foralli,j € [n],n+d | s;r;.

As trace(AB) = trace(BA), it follows that
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implying in turn that
(2) foreach i € [n], n + d = s;1;.
(1) and (2) imply thatr :=1ry =r9 =--- =71, and s := 51 = 59 = --- = S,,. As a consequence,
BA= —~ (B1)(AT1)T +dI = J +dI = AB.
n+d

Analyzing the equation AB = J + dI, we proved that every row of B has the same s number of ones, and
every column of A has the same  number of ones. The same argument on the equation BA = J + dI implies
that every row of A has the same number of ones, and the number inevitably has to be r, while every column
of B has the same number of ones, and the number inevitably has to be s. In particular, A is r-regular and B is

s-regular. As rs =n + d and r, s < n + d, it follows that r, s > 2, thereby finishing the proof. O
We are now ready for Lehman’s combinatorial characterization of the mni clutters different from the deltas:

Theorem 9.12 (Lehman 1990). Suppose C is a minimally non-ideal clutter over ground set E that is not a delta,
and let B := b(C). Denote by C, B the clutters over ground set E of the minimum cardinality members of C, B,

respectively. Then

(1) M(C) and M (B) are square and non-singular matrices,



(2) for some integers v > 2 and s > 2, M(C) is r-regular and M (B) is s-regular;

(3) forn:=|E

,rs>n—+1,
(4) after possibly permuting the rows of M (B), we have
MQC)MB)" =J+ (rs —n)I = M(B)"M(C),

that is, there is a labeling C1, . .., C,, of the members of C and a labeling B, . .., B, of the members of B
such that for all i, j € [n],

rs—m+1 ifi=j
1 ifi # J,

|C; N B;| =

and for all elements g, h € E(C),

rs—n+1 ifg=~h
1 ifg# h

{i€n]:geCi,heB}| =

Proof. Let z* € [0,1]F be a fractional extreme point of P(C). After applying Theorem 9.10 to the mni clutter
C, we get the following implications. The point 2* € [0,1]¥ is the unique fractional extreme point of P(C),
1 > z* > 0 and z* is simple. Let A be the submatrix of M (C) such that Az* = 1. We have that A = M (C).
Let By,..., B, be the minimal covers that correspond to the neighbors of x*, and let B be the matrix whose
rows are the incidence vectors of By, ..., B,,. Then after possibly permuting the rows of B, ABT = .J + dI for
some integer d > 1.

It now follows from Theorem 9.11 that A, B are non-singular matrices such that AB T =J+dIl =BTA,
and for some integers r, s > 2 such that rs = n + d, A is r-regular and B is s-regular. To finish the proof, it
remains to show that B = M (B). To this end, notice that z* is equal to (£ --- 1), and the neighbors of z* lie on

the hyperplane 211:1 xz; = s. Therefore, the inequality Z?:l x; > s 1is valid for all the integer extreme points

of P, implying in turn that every member of B has cardinality at least s. As a result, (% e %) is a fractional
1

extreme point of P(B). Applying Theorem 9.10 to the mni clutter 55, we see that (% -+ <) must be the unique

fractional extreme point of P(B) and B = M (B), as required. O

9.3 Immediate applications

The first application of Theorem 9.12 is that the deltas (with the exception of Ag) are the only mni clutters
requiring unequal weights to violate the width-length inequality. The following application is the true analogue

of the max-max inequality, Theorem 5.6:

Theorem 9.13. A clutter without a delta minor is ideal if, and only if, for each minor C,

min {|C|: C € C} -min{|B|: B €b(C)} < |E(C)|.



Proof. If the clutter is ideal, then the inequality follows from the width-length inequality of Theorem ??. Con-

versely, it suffices to prove that for an mni clutter C that is not a delta,
min{|C|: C € C} -min{|B| : B € b(C)} > |E(C)].

Let n, 7, s be the parameters as in Theorem 9.12. Then the inequality s > n + 1 implies the inequality above,

as required. [

(Notice that the theorem can be extended to clutters without a minor in {A,, : n > 4}.) A second application of
Theorem 9.12 is the following truly remarkable result that, to test integrality of an n-dimensional set covering

polyhedron, it is sufficient to test just 3™ directions:

Theorem 9.14. If C is a minimally non-ideal clutter, then
min{1 "z : M(C)z > 1,z > 0}

has no integral optimal solution. As a consequence, if C is a non-ideal clutter over ground set E, then there
exists w € {0, 1, 400} such that
min{w 'z : M(C)z > 1,z > 0}

has no integral optimal solution.

Proof. 1f C is a delta, then the result follows from Theorem 9.2 (2). Otherwise, C is not a delta, and let n, 7, s

i1 1

be as in Theorem 9.12. As every member has cardinality at least r, it follows that z* := (T p p

) is a
feasible solution, and its objective value is % < %‘1 < s. However, the minimum cardinality of a cover is s, so
min{1"z : M(C)x > 1,2 > 0} has no integral optimal solution. The second part follows from the first part
after applying Remark 7.10. O

A clutter C fractionally packs if it has a fractional packing of value 7(C). It follows from the preceding

theorem that an mni clutter does not fractionally pack. Thus,
Theorem 9.15. A clutter is ideal if, and only if, every minor fractionally packs.

We say that a clutter has the packing property if every minor packs. An immediate consequence of the

preceding theorem is that,
Corollary 9.16. If a clutter has the packing property, then it is ideal.

Conforti and Cornuéjols (1993) conjecture that if a clutter has the packing property, then it must be Mengerian.



