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9.2 The minimally non-ideal clutters different from the deltas, continued

Last time, we proved the following theorem:

Theorem 9.10 (Lehman 1990). Let C be a minimally non-ideal clutter over ground set E that is not a delta, and

let n := |E|. Let x? be a fractional extreme point of {1 ≥ x ≥ 0 : M(C)x ≥ 1}. Then the following statements

hold:

(1) 0 < x? < 1,

(2) x? lies on exactly n facets, that correspond to members C1, . . . , Cn ∈ C – so x? is a simple vertex,

(3) the n neighbors of x? are integral vertices, that correspond to covers B1, . . . , Bn labeled so that for distinct

i, j ∈ [n], |Ci ∩Bi| > 1 and |Ci ∩Bj | = 1,

(4) B1, . . . , Bn are minimal covers,

(5) C1, . . . , Cn are precisely the minimum cardinality members of C,

(6) x? is the unique fractional extreme point of {1 ≥ x ≥ 0 : M(C)x ≥ 1},

(7) there is an integer d ≥ 1 such that for each i ∈ [n], |Ci ∩Bi| = 1 + d.

In particular, x? is the unique fractional extreme point of {x ≥ 0 : M(C)x ≥ 1}.

Parts (3) and (7) of this theorem lead to square 0− 1 matrices whose product is of the form J + dI for an integer

d ≥ 1 – Bridges and Ryser (1969) studied such matrices and proved nice properties about them. For an integer

k ≥ 1, a square 0− 1 matrix is k-regular if every row and every column has exactly k ones.

Theorem 9.11 (Bridges and Ryser 1969). Take an integer n ≥ 3, and let A,B be n × n matrices with 0 − 1

entries such that

AB = J + dI

for some integer d ≥ 1. Then A,B are non-singular matrices that commute

BA = J + dI,

and for some integers r, s ≥ 2 such that rs = n+ d, A is r-regular and B is s-regular.
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Proof. As J + dI is non-singular, it follows that both A,B are non-singular matrices. In particular, neither A

nor B has a zero row or a zero column. We have

I = (J + dI)

(
1

d
I − 1

d(n+ d)
J

)
= (AB)

(
1

d
I − 1

d(n+ d)
J

)
= A

(
1

d
B − 1

d(n+ d)
BJ

)
,

so A and 1
dB −

1
d(n+d)BJ are inverses of one another. Thus,

I =

(
1

d
B − 1

d(n+ d)
BJ

)
A =

1

d
BA− 1

d(n+ d)
(B1)(A>1)>,

so

BA =
1

n+ d
(B1)(A>1)> + dI.

For each i ∈ [n], denote by si ∈ {1, 2, . . . , n} the number of ones in row i of B, and by ri ∈ {1, 2, . . . , n} the

number of ones in column i of A. Then the previous equation implies that

(1) for all i, j ∈ [n], n+ d | sirj .

As trace(AB) = trace(BA), it follows that

n+ nd =
1

n+ d

n∑
i=1

siri + nd,

so

n(n+ d) =

n∑
i=1

siri ≥ n(n+ d),

implying in turn that

(2) for each i ∈ [n], n+ d = siri.

(1) and (2) imply that r := r1 = r2 = · · · = rn and s := s1 = s2 = · · · = sn. As a consequence,

BA =
1

n+ d
(B1)(A>1)> + dI = J + dI = AB.

Analyzing the equation AB = J + dI , we proved that every row of B has the same s number of ones, and

every column of A has the same r number of ones. The same argument on the equation BA = J + dI implies

that every row of A has the same number of ones, and the number inevitably has to be r, while every column

of B has the same number of ones, and the number inevitably has to be s. In particular, A is r-regular and B is

s-regular. As rs = n+ d and r, s < n+ d, it follows that r, s ≥ 2, thereby finishing the proof.

We are now ready for Lehman’s combinatorial characterization of the mni clutters different from the deltas:

Theorem 9.12 (Lehman 1990). Suppose C is a minimally non-ideal clutter over ground set E that is not a delta,

and let B := b(C). Denote by C,B the clutters over ground set E of the minimum cardinality members of C,B,

respectively. Then

(1) M(C) and M(B) are square and non-singular matrices,
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(2) for some integers r ≥ 2 and s ≥ 2, M(C) is r-regular and M(B) is s-regular,

(3) for n := |E|, rs ≥ n+ 1,

(4) after possibly permuting the rows of M(B), we have

M(C)M(B)> = J + (rs− n)I = M(B)>M(C),

that is, there is a labeling C1, . . . , Cn of the members of C and a labeling B1, . . . , Bn of the members of B
such that for all i, j ∈ [n],

|Ci ∩Bj | =

rs− n+ 1 if i = j

1 if i 6= j,

and for all elements g, h ∈ E(C),

∣∣{i ∈ [n] : g ∈ Ci, h ∈ Bi

}∣∣ =

rs− n+ 1 if g = h

1 if g 6= h.

Proof. Let x? ∈ [0, 1]E be a fractional extreme point of P (C). After applying Theorem 9.10 to the mni clutter

C, we get the following implications. The point x? ∈ [0, 1]E is the unique fractional extreme point of P (C),

1 > x? > 0 and x? is simple. Let A be the submatrix of M(C) such that Ax? = 1. We have that A = M(C).

Let B1, . . . , Bn be the minimal covers that correspond to the neighbors of x?, and let B be the matrix whose

rows are the incidence vectors of B1, . . . , Bn. Then after possibly permuting the rows of B, AB> = J + dI for

some integer d ≥ 1.

It now follows from Theorem 9.11 that A,B are non-singular matrices such that AB> = J + dI = B>A,

and for some integers r, s ≥ 2 such that rs = n + d, A is r-regular and B is s-regular. To finish the proof, it

remains to show thatB = M(B). To this end, notice that x? is equal to ( 1
r · · ·

1
r ), and the neighbors of x? lie on

the hyperplane
∑n

i=1 xi = s. Therefore, the inequality
∑n

i=1 xi ≥ s is valid for all the integer extreme points

of P , implying in turn that every member of B has cardinality at least s. As a result, ( 1
s · · ·

1
s ) is a fractional

extreme point of P (B). Applying Theorem 9.10 to the mni clutter B, we see that ( 1
s · · ·

1
s ) must be the unique

fractional extreme point of P (B) and B = M(B), as required.

9.3 Immediate applications

The first application of Theorem 9.12 is that the deltas (with the exception of ∆3) are the only mni clutters

requiring unequal weights to violate the width-length inequality. The following application is the true analogue

of the max-max inequality, Theorem 5.6:

Theorem 9.13. A clutter without a delta minor is ideal if, and only if, for each minor C,

min {|C| : C ∈ C} ·min {|B| : B ∈ b(C)} ≤ |E(C)|.
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Proof. If the clutter is ideal, then the inequality follows from the width-length inequality of Theorem ??. Con-

versely, it suffices to prove that for an mni clutter C that is not a delta,

min{|C| : C ∈ C} ·min{|B| : B ∈ b(C)} > |E(C)|.

Let n, r, s be the parameters as in Theorem 9.12. Then the inequality rs ≥ n + 1 implies the inequality above,

as required.

(Notice that the theorem can be extended to clutters without a minor in {∆n : n ≥ 4}.) A second application of

Theorem 9.12 is the following truly remarkable result that, to test integrality of an n-dimensional set covering

polyhedron, it is sufficient to test just 3n directions:

Theorem 9.14. If C is a minimally non-ideal clutter, then

min{1>x : M(C)x ≥ 1, x ≥ 0}

has no integral optimal solution. As a consequence, if C is a non-ideal clutter over ground set E, then there

exists w ∈ {0, 1,+∞}E such that

min{w>x : M(C)x ≥ 1, x ≥ 0}

has no integral optimal solution.

Proof. If C is a delta, then the result follows from Theorem 9.2 (2). Otherwise, C is not a delta, and let n, r, s

be as in Theorem 9.12. As every member has cardinality at least r, it follows that x? :=
(
1
r

1
r · · ·

1
r

)
is a

feasible solution, and its objective value is n
r ≤

rs−1
r < s. However, the minimum cardinality of a cover is s, so

min{1>x : M(C)x ≥ 1, x ≥ 0} has no integral optimal solution. The second part follows from the first part

after applying Remark 7.10.

A clutter C fractionally packs if it has a fractional packing of value τ(C). It follows from the preceding

theorem that an mni clutter does not fractionally pack. Thus,

Theorem 9.15. A clutter is ideal if, and only if, every minor fractionally packs.

We say that a clutter has the packing property if every minor packs. An immediate consequence of the

preceding theorem is that,

Corollary 9.16. If a clutter has the packing property, then it is ideal.

Conforti and Cornuéjols (1993) conjecture that if a clutter has the packing property, then it must be Mengerian.

4


