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9.1 The deltas, continued

Take an integer n ≥ 3. Recall that a delta of dimension n is (any clutter isomorphic to) the clutter over ground

set [n] whose members are

∆n =
{
{1, 2}, {1, 3}, . . . , {1, n}, {2, 3, . . . , n}

}
.

We showed last time that the deltas are mni. We also proved the following tool for finding a delta minor:

Theorem 9.3 (Abdi, Cornuéjols, Pashkovich 2017). Take a clutter C over ground set E and an element e ∈ E.

If there are distinct members C1, C2, C such that e ∈ C1 ∩ C2, e /∈ C and (C1 ∪ C2)− {e} ⊆ C, then C has a

delta minor that can be found in time O(|E||C|).

Let us say that two elements of a clutter are exclusive if they are never used together in a member. That is,

distinct elements f, g of a clutter are exclusive if no member contains {f, g}. Notice that exclusive elements

remain exclusive in every minor that they are present in. The preceding result has the following immediate

consequence:

Corollary 9.4. Let C be a clutter without a delta minor, and take distinct elements e, f, g. If {e, f}, {e, g} are

members, then f, g are exclusive.

We are now ready to prove the following:

Theorem 9.5 (Abdi, Cornuéjols, Pashkovich 2017). Let C be a clutter over ground set E. Then in time

O(|E|3|C|3), one can find a delta minor or certify that none exists.

Proof. We claim that the following statements are equivalent:

(i) C does not have a delta minor,

(ii) for all distinct members C1, C2 with C1 ∩ C2 6= ∅ and for all elements e, f, g with e ∈ C1 ∩ C2, f ∈
C1 − C2, g ∈ C2 − C1, the following holds: for X := (C1 ∪ C2) − {e, f, g} and C′ := C/X , either

{e, f} /∈ C′ or {e, g} /∈ C′ or f, g are exclusive elements of C′.
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(ii) ⇒ (i): Assume that (i) does not hold. Suppose C has a delta minor obtained after deleting I ⊆ E and

contracting J ⊆ E. Pick elements e, f, g ∈ E− (I ∪ J) such that {e, f}, {e, g} are members of the delta minor.

Notice that f, g are not exclusive elements in the delta minor, and so they are not exclusive in C. Let C1, C2 be

members of C such that {e, f} ⊆ C1 ⊆ {e, f} ∪ J and {e, g} ⊆ C2 ⊆ {e, g} ∪ J . It can be readily checked

that C1, C2 and e, f, g do not satisfy (ii). Thus, (ii) does not hold. (i) ⇒ (ii): Assume that (i) holds. Take

C1, C2, e, f, g,X, C′ as in (ii) where {e, f} ∈ C′ and {e, g} ∈ C′. Since C has no delta minor, neither does C′,
so by Corollary 9.4, f and g are exclusive elements of C′, so (ii) holds. Hence, (i) and (ii) are equivalent. Since

(ii) may be verified in time O(|E|3|C|3), and if (ii) does not hold, a delta minor can be found in time O(|E||C|)
using Theorem 9.3, we can find a delta minor or certify that none exists in time O(|E|3|C|3).

9.2 The other minimally non-ideal clutters

We now move on to the mni clutters different from the deltas. Take an odd integer n ≥ 5. Consider the clutter

over ground set [n] whose members are

C2
n := {{1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}} .

The clutter C2
n, and any clutter isomorphic to it, is called an odd hole of dimension n. It may be readily checked

that odd holes are mni. In contrast to Theorem 9.5,

Theorem 9.6 (Ding, Feng, Zang 2008). Finding an odd hole minor in a clutter is an NP-complete problem.

That is, unless P and NP are equal, there is no algorithm for finding an odd hole minor in a clutter C over

ground set E, whose running time is polynomial in |E| and |C|. Theorems 9.5 and 9.6 highlight the difference

between the deltas and the other mni clutters. There are many mni clutters: other than the two infinite classes

{C2
2n−1 : n ≥ 3} and {b(C2

2n−1) : n ≥ 3}, there are at least two other infinite classes of mni clutters different

from the deltas, as well as many sporadic examples. For instance, the clutter of the lines of the Fano plane

L7 = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 7}, {2, 5, 6}, {3, 4, 6}, {3, 5, 7}} = b(L7),

as well as C2
9 ∪ {{3, 6, 9}} are mni. It may now seem that there is no good characterization of the mni clutters

different from the deltas, but this is not the case – Alfred Lehman (1990) provided powerful geometric and

combinatorial characterizations of these clutters. Before getting to his characterizations, let us briefly study the

geometric aspects of ideal clutters and of minor operations. First off, it is easier to work with polytopes rather

than polyhedra:

Proposition 9.7. Take a clutter C over ground set E. Then C is ideal if, and only if, {1 ≥ x ≥ 0 : M(C)x ≥ 1}
is an integral polytope.

Proof. Let Q := {x ≥ 0 : M(C)x ≥ 1} and P := {1 ≥ x ≥ 0 : M(C)x ≥ 1}. If Q is not integral, it has a

fractional extreme point x?, and as x? ≤ 1, it follows that x? is also an extreme point of P , so P is not integral.

2



Conversely, assume that P is not integral, and let x? be a fractional extreme point. Let

Ix? := {e ∈ E : x?
e = 1}.

We prove by induction on |Ix? | ≥ 0 that Q has a fractional extreme point. If Ix? = ∅, then x? is also an extreme

point of Q, so we are done. For the induction step, we assume that |Ix? | ≥ 1. If for each e ∈ I , there is a member

C such that C ∩ Ix? = {e}, then x? is an extreme point of Q also, so we are done. Otherwise, for some f ∈ Ix?

there is no member C such that C ∩ Ix? = {f}. That is, there is no member C such that f ∈ C and x?(C) = 1.

Thus, we may strictly decrease the f
th

coordinate of x? until we get another fractional extreme point x̄ of P .

Clearly, Ix̄ = Ix? − {f}, so by the induction hypothesis, Q has a fractional extreme point. This completes the

induction step.

For a clutter C, denote by P (C) the set covering polytope {1 ≥ x ≥ 0 : M(C)x ≥ 1}. Notice that the covers

of C are precisely the integer extreme points of P (C). (Every integer point of P (C) is also an extreme point.)

Moreover, the minors of C have a natural geometric interpretation in terms of P (C):

Remark 9.8. Let C be a clutter over ground set E, and take an element e ∈ E. Then the following statements

hold:

• P (C \ e) is the restriction P (C) ∩ {x : xe = 1} after dropping coordinate xe.

• P (C/e) is the restriction P (C) ∩ {x : xe = 0} after dropping coordinate xe.

We can now dive into Lehman’s characterizations. First up is a brilliant lemma that will be very useful. Take

an integer n ≥ 2, and let A be an n× n matrix with 0− 1 entries and without a row or a column of all ones. We

say that A is cross regular if whenever Aij = 0, the number of ones in column j is equal to the number of ones

in row i.

Lemma 9.9 (Lehman 1990). The following statements hold:

(1) Take an integer n ≥ 2, and let A be a 0−1 n×n matrix without a row or a column of all ones, and whenever

Aij = 0, the number of ones in column j is greater than or equal to the number of ones in row i. Then A is

cross regular.

(2) Cross regular matrices cannot differ in just one row.

Proof. (1) Suppose A is an n× n matrix. For each row i ∈ [n] and column j ∈ [n], let ri denote the number of

ones in row i and let cj denote the number of ones in column j. Then∑
j∈[n]

cj =
∑
j∈[n]

∑
i∈[n]:Aij=0

cj
n− cj

≥
∑
j∈[n]

∑
i∈[n]:Aij=0

ri
n− ri

=
∑
i∈[n]

∑
j∈[n]:Aij=0

ri
n− ri

=
∑
i∈[n]

ri.

As the left- and right-hand side terms are equal, equality must hold throughout, implying in turn that whenever

Aij = 0, then ri = cj . Thus, A is cross regular. (2) Suppose for a contradiction that
(
B

a

)
,

(
B

a′

)
are cross
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regular matrices and a 6= a′. We may assume that a1 = 1 and a′1 = 0. Since
(
B

a

)
is cross regular, the first

column of B has a zero entry, say it is the first entry. Let k ≥ 0 be the number of ones in the first column of B.

Then as
(
B

a

)
is cross regular, the first row of B has k+ 1 ones. However, as

(
B

a′

)
is also cross regular, the first

row of B must have k ones, a contradiction.

Given a full-dimensional polytope P ⊆ Rn and a vertex x?, we say that x? is simple if it belongs to exactly

n facets. Recall that if x? is simple, then there are exactly n edges emanating from x?, each of which is defined

uniquely by n − 1 many of the tight facets. As a result, if x? is simple, then it has exactly n adjacent vertices.

Lehman proved the following geometric characterization of the mni clutters different from the deltas:

Theorem 9.10 (Lehman 1990). Let C be a minimally non-ideal clutter over ground set E that is not a delta, and

let n := |E|. Let x? be a fractional extreme point of {1 ≥ x ≥ 0 : M(C)x ≥ 1}. Then the following statements

hold:

(1) 0 < x? < 1,

(2) x? lies on exactly n facets, that correspond to members C1, . . . , Cn ∈ C, so x? is a simple vertex,

(3) the n neighbors of x? are integral vertices, that correspond to covers B1, . . . , Bn labeled so that for distinct

i, j ∈ [n], |Ci ∩Bi| > 1 and |Ci ∩Bj | = 1,

(4) B1, . . . , Bn are minimal covers,

(5) C1, . . . , Cn are precisely the minimum cardinality members of C,

(6) x? is the unique fractional extreme point of {1 ≥ x ≥ 0 : M(C)x ≥ 1},

(7) there is an integer d ≥ 1 such that for each i ∈ [n], |Ci ∩Bi| = 1 + d.

In particular, x? is the unique fractional extreme point of {x ≥ 0 : M(C)x ≥ 1}.

We will prove this theorem next time.
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