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8.2 T-joins and 7T'-cuts, continued
Today we prove the following theorem. The proof we present is due to Sebd (1987).

Theorem 8.10 (Seymour 1981). Take a bipartite graph G = (V, E), and a non-empty subset T C 'V of even
cardinality. Then the minimum cardinality of a T'-join is equal to the maximum number of disjoint T-cuts. That

is, the clutter of minimal T-cuts of a bipartite graph packs.

Proof. We proceed by induction on the number of vertices of G. The base case |V| = 2 holds trivially. For the
induction step, assume that |V'| > 3. Denote by 7 the minimum cardinality of a T-join. We will construct 7
disjoint T-cuts. If 7 = 1, then we are done. We may therefore assume that 7 > 2. Among all minimum 7-joins,
pick the one .J whose longest path is the longest compared to the other ones. Define weights w € {—1,1} as
follows: for each e € J set w, := —1, and for each e € E — J set w, := 1. By Remark 8.8, GG has no negative
cycle, and as G is bipartite, every cycle has even weight.

Let @ be the longest path contained in J and let u, v be its ends. As @ is the longest path in J, and as G has
no negative cycle, it follows that u, v each have degree 1 in J. In particular, u,v € odd(J) = T. Let e* be the
edge of ) incident with u. Then J N é(u) = {e*}.

Claim 1. If C is a circuit such that C N 6(u) # O and e* ¢ C, then w(C) > 2

Proof of Claim. Suppose otherwise. Since w(C) > 0 and w(C) is even, it follows that w(C') = 0. So JAC'is
another minimum 7'-join, and as ) cannot be extended to a longer path in JAC, @ and C' must share a vertex
other than u. Among all the vertices in V(Q) — {u} that also belong to V' (C), pick the one w that is closest
to w on Q. Let Q' be the uw-path in Q; as e* ¢ C, it follows that Q' # ) and Q' N C = . Let Py, P> be
the two ww-paths partitioning C'. Since w(P;) + w(Pz) = w(C) = 0 and w(Q’) < 0, it follows that one of

P, UQ', P, UQ' is anegative circuit, a contradiction. O
Claim 2. u cannot be adjacent to all the other vertices in T.

Proof of Claim. Suppose otherwise. In particular, u and v are adjacent, and as G has no negative cycle, @) has

length 1. Since @ is the longest path in J, it follows that .J is a matching, and as 7 > 2, the matching has an



edge other than the edge of (). Since u is adjacent to the other matched vertices, G has a triangle, a contradiction

as G is bipartite. O

Let (G',T") := (G, T)/é(u). Notice that G" is still a bipartite graph, and by Claim 2, 7" # (. Let J' := J—6(u).
Then J' is a T’-join of G’ of length 7 — 1. In fact,

Claim 3. J' is a minimum T'-join of G'.

Proof of Claim. Define weights w’ € {—1,1}¥(S") on the edges of G’ as follows: for each e € .J' set w'(e) :=
—1, and for each e € E(G’) — J' set w'(e) := 1. Notice that w’ is simply the restriction of w to E — §(u) =
E(G'"). To prove that J' is a minimum 7”-join of G’, it suffices by Remark 8.8 to show that G’ does not have a
negative circuit. To this end, let C’ be a circuit of G’, and let C be a circuit of G such that ¢/ C C C C" U d(u).
If C = C'ore* € C, then w (C') = w(C) > 0. Otherwise, C N §(u) # @ and e* ¢ C. It therefore follows
from Claim 1 that

w'(C") =w(C)—2>0,

as required. O

Thus, by the induction hypothesis, G’ has 7 — 1 disjoint T'-cuts; these are also disjoint T'-cuts of G, and together
with §(u), they give 7 disjoint T-cuts in G, thereby completing the induction step. This finishes the proof.  [J

This result is actually sufficient to guarantee certificates of optimality for minimum 7'-joins in general graphs:

Theorem 8.11 (Edmonds and Johnson 1970, 1973). Take a graph G = (V, E) and a non-empty subset T C V of
even cardinality. Denote by C be the clutter of minimal T'-cuts over ground set E. Then the following statements

hold:

(1) For weights w € Zf where every cycle has total even weight, the minimum weight of a T-join is equal to

the maximum size of a weighted packing of T-cuts:

7(C,w) = v(C,w).

(2) (Lovdsz 1975) For arbitrary weights w € ZE, the minimum weight of a T-join is equal to the maximum

value of a half-integral weighted packing of T-cuts:

T(C,w):;yneazyé{lTy:Z(yc:eeCeC)Swe VeeE}.

(3) The clutter C of minimal T-cuts is ideal, that is, the polyhedron
{xZO:Z(xe:eEB) >1 VT-cutsB}

is integral, and its vertices are the incidence vectors of the minimal T'-joins.



Proof. (1) If there is a T-join of weight 0, then there is nothing to show. We may therefore assume that the
minimum weight of a T-join is non-zero. Let (G’,T") be the pair obtained from (G, T) after contracting all
edges of weight 0, and for each edge e with w. > 1, replacing e by w,. edges in series (the intermediate vertices
will not be included in 7”). Notice that every cycle C' in G corresponds to a cycle in G’ of length w(C'), and
conversely, every cycle C’ in G’ corresponds to a cycle in G of weight |C’|. Thus, since every cycle of G has
even weight, it follows that G’ is a bipartite graph. Moreover, it is clear that every T-join .J in G corresponds to
a T’-join in G’ of length w(.J), and conversely, every T"-join J’ in G’ corresponds to a T-join in G of weight
|.J’|. In particular, 7" # (. It therefore follows from Theorem 8.10 that the minimum cardinality of a 7”-join in
G’ is equal to the maximum number of disjoint 7”-cuts of G’. As every packing of 7’-cuts in G’ corresponds
to a weighted packing of T'-cuts in G, it follows that 7(C, w) = v(C, w), as required. (2) Take arbitrary weights
w E Zf . It follows from (1) that
27(C,w) = 7(C,2w) = v(C, 2w) = max {lTy : Z(yc e (Cel)<2w, Vee E} ,

C
y€Z+

thereby proving (2). (3) follows immediately from (2). L]
After applying Theorem 7.8 to part (3), we get the following:

Corollary 8.12. Tuke a graph G = (V, E) and a non-empty subset T C V of even cardinality. Then the clutter
of minimal T-joins is ideal. That is, for all weights w € 7Y, the minimum weight of a T-cut is equal to the

maximum value of a fractional weighted packing of T-joins.

Cornuéjols (2001) conjectures that in the above corollary, the minimum weight of 7T-cut should be equal to the
maximum value of a quarter-integral weighted packing of 7-joins. In contrast to T-cuts, packing 7-joins is a
difficult problem. To illustrate this, we need a definition. A 3-graph is a connected bridgeless graph G = (V, E)

where every vertex has degree 3.

Proposition 8.13. Let G = (V, E) be a plane 3-graph. Then the following statements are equivalent:
(i) G has three disjoint perfect matchings, so the clutter of minimal V -joins packs,
(ii) G has two disjoint V -joins,

(iii) G has a 4-face-coloring.

Proof. (i) = (ii) holds trivially. (ii) = (iii): Suppose that G has disjoint minimal V-joins J1, Jo. Let G* =
(V*, E) be the plane dual of G, and notice that every face of G* is a triangle. Notice that the V' -cuts of G are in
correspondence with the cycles of G* bounding an odd number of triangles, implying in turn that the V' -cuts of
G are in correspondence with the odd cycles of G*. Since each J; is a minimal cover of the V-cuts of GG, each J;
is also a minimal cover of the odd cycles of G*, implying in turn that there is a non-empty cut §(U;),U; C V*
of G* such that §(U;) = E — J;. Since J; N Jy = 0, it follows that U; N Uy, U; N U, Uy N Uy, Uy N Uy are
stable sets of G*, thereby yielding a 4-vertex-coloring of G*, and hence a 4-face-coloring of G. (iii) = (i): Let



h € {(0,0),(0,1),(1,0), (1, 1)} {faces} be a 4-face-coloring of G. For each edge e, whose neighboring faces are
F and F5, let
g(e) :== h(F1) + h(F3) (mod 2).

Since F, F; are adjacent faces, and therefore have different colors, it follows that g(e) € {(0,1), (1,0),(1,1)}.
Let

Ji:={e€ E:g(e)=(0,1)}
Jy:={e€ E:g(e)=(1,0)}
Js:={e€ E:gle) =(1,1)}.

We claim that each J; is a perfect matching. To see this, take an arbitrary vertex v, whose neighboring faces are
Fy, F5, F3. Then the three edges incident with v have g-values h(Fy) + h(Fs), h(Fa) + h(F3), h(F5) + h(F})
(mod 2). As h(Fy), h(Fy), h(F3) are pairwise distinct, we get that the g-values of the three edges incident with
v are different, so v is indicent with exactly one edge from each J;. As this is true for each vertex, it follows that

each J; is a perfect matching, as required. [

It is widely known that 4-face-coloring plane 3-graphs is just as general as 4-face-coloring arbitrary plane graphs.
Thus, the implication (ii) = (iii) implies that finding just two disjoint 7T-joins in a graph can be a difficult
problem. Appel and Haken (1977), and again Robertson, Sanders, Seymour and Thomas (1996), proved that

plane graphs are 4-face-colorable. As a consequence, the implication (iii) = (i) implies that,
Theorem 8.14. The clutter of minimal T-joins of a planar 3-graph packs.

This result does not extend to non-planar 3-graphs. For instance, the Petersen graph is a 3-graph whose clutter

of minimal 7-joins does not pack, as it is not 3-edge-colorable.



