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6.2 The pluperfect graph theorem
Recall that for a non-negative matrix A without a column of all zeros A, the antiblocker of
P:={z>0:Azx <1}

is the set
a(P):={y>0:2"y<1 VYze P}

Last time, we showed that

Proposition 6.3. Let A be a non-negative matrix without a column of all zeros. Let B be the matrix whose rows

are the extreme points of P := {x > 0 : Ax < 1}. Then B is non-negative, has no column of all zeros, and

a(P)={y>0:By<1)
a(a(P)) = P.

Next we study the extreme points of the antiblocker. Given vectors x,y of the same dimension, if z is

obtained from y after setting some of the coordinates to 0, then we say that x is a projection of y.

Proposition 6.4. Let A be a non-negative matrix and let P := {x € R} : Az < 1}. Then the following

statements hold:
(1) Let T be an extreme point of P for which
k
i=1

for some points ', ..., 2% € P and scalars \1,...,\;, > 0 with Zle Ai = 1. Then X is a projection of

each x".

(2) Suppose that A has no column of all zeros. Then every extreme point of a( P) is a (possibly trivial) projection
of a row of A.



Proof. (1)If T = 0, then we are done. Otherwise, after possibly rearranging the coordinates, we have Z = (Z, 0)
for some ¢ > 1 and z € R such that Z > 0. For each i € [k], denote by z* the vector consisting of the first ¢

coordinates of z*. Then
k
z < Z /\izi =: z.
i=1

Notice that z consists of the first ¢ coordinates of Zle Aix?. As T is an extreme point of P, there is an £ x £
non-singular submatrix £ of A such that £Z = 1. On the one hand, as F is non-negative and z > Z, it follows
that £z > EZ = 1. On the other hand, as Az < 1, it follows that Fz < 1. Thus, Ez = EZ = 1, implying in

turn that z = Z. As a result,

k
7 =(20)=(20) =Y \(z,0).
i=1
Since Z is an extreme point, and each (z,0) belongs to P, it follows that 7 = (z',0) = --- = (z¥,0), as

required.
(2) Denote by B the matrix whose rows are the extreme points of the polytope P. Then by Proposition 6.3,
B is a non-negative matrix without a column of all zeros, and a(P) = {y > 0 : By < 1}. Denote by A’ the

matrix whose rows are the extreme points of the polytope a(P). Then by Proposition 6.3,
{r>0: Az <1} =a(a(P))={z>0: Az <1}.

Take an extreme point a’ of a(P), which is also a row of A’. Since a/T 2 < 1 is valid for {x > 0: Az < 1}, it
follows that @’ is bounded above by a convex combination of the rows of A. Applying (1) to a(P), we see that

a’ must be a projection of a row of A, as required. O
We are now ready for the pluperfect graph theorem:

Theorem 6.5 (Fulkerson 1972). Let A be a non-negative matrix without a column of all zeros, and let B be the

matrix whose rows are the extreme points of {x > 0 : Az < 1}. If A is perfect, then so is B.

Proof. Suppose that A is perfect, that is, A is a 0 — 1 matrix whose associated set packing polytope P :=
{z > 0: Ax < 1} is integral. So B is a 0 — 1 matrix. By Proposition 6.3, B has no column of all zeros and
a(P) = {y > 0 : By < 1}. Therefore, by Proposition 6.4 (2), every extreme point of {y > 0: By < 1} isa
projection of a row of A. In particular, {y > 0 : By < 1} is integral, that is, B is perfect. O

6.3 Clutters and antiblockers

Let V be a finite set of elements, and let A be a family of subsets of V, called members. We say that A is a
clutter over ground set V' if no member is contained in another one. The incidence matrix of A, denoted M (A),

is the 0 — 1 matrix whose columns are labeled by V' and whose rows are the incidence vectors of the members.

Remark 6.6. Let Ay, As be clutters over the same ground set, where every member of Ay contains a member

of As, and every member of Ay contains a member of Ay. Then A1 = As.



Proof. Take A; € A;. Then A; contains a member A of As, and A contains a member of A;. As A; is a
clutter, it must be that A1 C A C Ay, implying in turn that A = A;. Thus, A; C A,. Similarly, Ay C Aj, so
A = As. O

Let A be a clutter over ground set V', where every element is contained in a member. Consider the set packing

polytope associated with A:
{xERK:Z(mU:veA)gl VAEA}:{xEO:M(A)xgl}.
Notice that the 0 — 1 points of P(.A) correspond to the sets in
{BCV:|IBNnAl<1VAeA},

and that every 0 — 1 point of the polytope is in fact an extreme point. We say that A is a perfect clutter if the
associated set packing polytope is integral, that is, when the associated incidence matrix M (.A) is perfect. Notice
that an arbitrary 0 — 1 matrix A is perfect if, and only if, the clutter corresponding to the maximal rows of A is
perfect. As a consequence, studying perfect clutters is just as general as studying perfect matrices.

Let A be a clutter over ground set V. The maximal sets of {B C V : |[BN A| <1 VA € A} form another
clutter over the same ground set, called the antiblocker of A and denoted a(.A). If every element is used in a
member of .4, then the members of a(.A) are precisely the maximal integral points contained in the set packing

polytope. For instance,

the antiblocker of {{1,2},{2,3},{3,1}} = {{1}, {2}, {3}}
the antiblocker of {{1}, {2},{3}} = {{1,2,3}}
the antiblocker of {{1,2,3}} = {{1}, {2}, {3}}.

One natural question to ask is, when do we have a(a(.A)) = .A? Perhaps surprisingly, the answer is very simple:

Proposition 6.7 (Fulkerson 1971). Let A be a clutter over ground set V. Then the following statements are

equivalent:
(i) ala(A)) = A
(it) A consists of the maximal stable sets of a graph over vertex set V.

Proof. (ii) = (i): Suppose A consists of the maximal stable sets of G = (V, E'). Then a vertex set intersects
every stable set at most once if, and only if, it is a clique. This implies that a(.A) consists of the maximal cliques
of G. Applying the same argument to G implies that a(a(.A)) consists of the maximal stable sets of G, so
a(a(A)) = A. (i) = (ii): Suppose a(a(A)) = A. Let G be the graph over vertex set IV, where distinct vertices
u, v are non-adjacent if there is a member containing both u, v. Clearly, every member of A is a stable set of G.

Conversely, let S C V be a stable set of G. We claim that

%)  |SNB|<1 VBea(A).



Suppose otherwise. Then for distinct vertices u, v of G, {u,v} C SN B. However, as u and v are non-adjacent,
{u,v} C A for some member A € A, but then {u,v} C AN B, a contradiction as B € a(.A). This proves (%),
implying in turn that S is contained in a member of a(a(A)) = A. Remark 6.6 implies that A consists of the

maximal stable sets of (7, as required. O
As a consequence,

Theorem 6.8 (Padberg 1973). If a clutter is perfect, then its members are the maximal stable sets of a simple

graph.

Proof. Let A be a perfect clutter over ground set V', and let A be the corresponding incidence matrix. Let B be
the matrix whose rows are the extreme points of P := {& > 0 : Az < 1},andlet Q := {y > 0 : By < 1}.
Then by Proposition 6.3, a(P) = @ and a(Q) = P. Moreover, since the clutter A is perfect, the matrix A
is perfect, so by Theorem 6.5, B is a perfect matrix. Let 3 be the clutter over ground set V' whose members
correspond to the maximal rows of B. Notice that a(.A) corresponds to the maximal integral extreme points of
P, so a(A) = B. Similarly, a(B) corresponds to the maximal integral extreme points of @, so a(B) = A. It

therefore follows from Proposition 6.7 that A consists of the maximal stable sets of a graph, as required. O
In fact, as we will see on Assignment 2, the simple graph above is perfect:

Theorem 6.9 (Chvatal 1975). Let G = (V, E) be a simple graph. If the clutter of the maximal stable sets of G
is perfect, then G is a perfect graph.

Summarizing the results of this section and the previous one, we get the following characterization of when the

set packing polytope is integral:
Corollary 6.10. The following statements hold:

(1) Let A be a 0 — 1 matrix without a column of all zeros whose set packing polytope {x > 0 : Az < 1} is
integral. Then the linear system x > 0, Ax < 1 is totally dual integral, the maximal rows of A correspond

to the maximal stable sets of a simple graph, and the graph is perfect.

(2) Let G be a simple graph. Then G is perfect if, and only if, it has no odd hole and no odd antihole.



