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4 Balanced matrices

Recall that an odd square matrix of the form

—_ =
— =

1 1

with at least three columns is called an odd circuit matrix (all the other entries are set to 0). Recall thata 0 — 1

matrix is balanced if it has no odd circuit submatrix, even after rearranging its rows and columns.

4.1 A bicoloring characterization of balanced matrices

A bicoloring of a 0 — 1 matrix is a partition of the columns into two color classes, where every row with at least

two 1s gets both colors. For instance, R = {1,4} and B = {2, 3} yields a bicoloring of the matrix
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whose columns are labeled 1, 2, 3, 4 from left to right.
Theorem 4.1 (Berge 1972 [1]). A 0 — 1 matrix is balanced if, and only if, every submatrix has a bicoloring.

Proof. Let Abe a(0— 1 matrix. (<) Since an odd circuit is not bipartite, an odd circuit matrix is not bicolorable.
So, if every submatrix of A is bicolorable, A must be balanced. (=) Suppose otherwise. We may assume that
A is a balanced matrix that is not bicolorable, but every proper submatrix is bicolorable. In particular, every row

of A has at least two 1s. Let V' collect the column labels of A.

Claim. For every v € V, there exist rows of the form {v,u}, {v, w} for some distinct u,w € V — {v}.



Proof of Claim. For if not, bicolor the column submatrix of A corresponding to the columns V' — {v}. Our

contrary assumption allows us to extend this bicoloring to a bicoloring of A, a contradiction. %

Let G be the graph on vertices V' whose edges correspond to the rows in A with exactly two 1s. Since A is
balanced, and the edge-vertex incidence matrix of GG is a submatrix of A, it follows that G is bipartite. By the
claim above, every vertex of G has at least two distinct neighbors, so every connected component of GG has at
least four vertices. Pick a vertex vy of G that is not a cut-vertex. Now bicolor (R, B) the column submatrix of A
corresponding to the columns V' — {wg}. Since G is bipartite, and vy is not a cut-vertex, the neighbors of vy get
the same color, say R. Observe now that (R, B U {vg}) is a bicoloring of A, a contradiction to our assumption.
This finishes the proof of Theorem 4.1. O

A hypergraph is a pair G = (V, E) where V is a finite set of vertices, and each element of F is a nonempty

subset of V, called an edge. A hypergraph is balanced if its incidence matrix is balanced.

Corollary 4.2 (Berge 1972 [1]). Let G = (V, E) be a balanced hypergraph, and let k > 2 be the minimum
cardinality of an edge. Then there exists a partition of V into k color classes where every edge gets at least one

vertex of each color.

Proof. For k = 2, the result follows immediately from Theorem 4.1. We may therefore assume that k£ > 3. Let
(S1,-..,Sk) be an arbitrary partition of V. For each edge e, let

ke:=|{i€[k]:enS; #0} €{1,...,k}.

If each k. is k, then we have a k-coloring. Otherwise, assume that k, < k for some edge g. Since |g| > k, we
may assume that
|gﬂSk_1| >2 and gNS,=0.

Let A be the edge-vertex incidence matrix of G. Since A is balanced, by Theorem 4.1, we may bicolor the
column submatrix of A corresponding to S,_1 U Sy, and get a bicoloring S;,_; U S}.. Consider now the partition
(S1,--+ s Sk—2,5%_1,5};). Notice that g intersects k,+1 many of these parts, and every other edge e intersects at

least k. many of these parts. By applying this argument recursively, we will achieve the desired k-coloring. [

For an integer £ > 2, a hypergraph is k-partite if its vertices can be partitioned into k parts such that every
edge intersects each part at most once. As an immediate consequence of the preceding result, we have the

following:

Corollary 4.3. Take an integer k > 2 and a hypergraph where every edge has cardinality k. If G is balanced,
then it is k-partite.

4.2 Integral polyhedra associated with balanced matrices
Take a 0 — 1 matrix A with column labels E, and consider the polytope

PA)={1>2>0: Az =1}.



Notice that for each e € F,
P(AN{z:z,=0}=PA") and PA)N{zx:z.=1}=P(A")

where A’ A" are appropriate submatrices of A. (Equality holds above after extending P(A’), P(A") to R by

setting new coordinates to either O or 1.)
Proposition 4.4. Let A be a balanced matrix. Then the polytope P(A) is integral.

Proof. Suppose otherwise. Let E be the column labels of A. We may assume that P(A) is not integral, but for
every proper submatrix A’ of A, P(A’) is integral. In particular, for every e € F, the two polytopes

PAYN{zx:xz.,=0} and P(A)N{z:z.=1}

are integral. Let 2* be a fractional extreme point of P(A). Since the polytopes above are integral, it follows that

1 > z* > 0. Our minimality assumption implies that A is a square nonsingular matrix.
Claim. Every row of A has exactly two 1s.

Proof of Claim. Since 1 > x*, every row of A has at least two 1s. Let A’ be the matrix obtained from A after
removing the first row. Since P(A’) is integral and z* € P(A’), it follows that z* lies on an edge of P(A’). So
for some vertices xs, xT € P(A’) and X € (0, 1),

¥ = Axs + (1 = A)xr.

Since 1 > x* > 0, it follows that SNT = P and SUT = E. Since A'ys = 1 = A’xr, every row of A other
than the first row has exactly two 1s. A similar argument applied to the second row implies that even the first

row has exactly two 1s. O

Since A is balanced, it is the incidence edge-vertex incidence matrix of a bipartite graph G. As A is a square

matrix, G has an even circuit, which in turn contradicts the nonsingularity of A. This finishes the proof of

Proposition 4.4. O
A

Theorem 4.5 (Fulkerson, Hoffman, Oppenheim 1974 [2]). Let | B | be a balanced matrix. Then the polyhe-
c

dron

P={x>0:Ax>1,Bx<1,Cx =1}

is integral. In particular, the set packing polytope and the set covering polyhedron corresponding to a balanced

matrix are both integral.

Proof. Let x* be an extreme point of P. Observe that z* < 1, and that x* is also an extreme point of the
A

polytope {1 > x > 0 : Dz = 1}, where D is the row submatrix of | B | corresponding to the constraints of
C



A
Az > 1,Bz < 1,Cx = 1 that are tight at z*. Since | B | is balanced, so is D, so by Proposition 4.4, z* is
C

integral, as required. O

In fact, the linear system above is totally dual integral. We will prove a similar result next time.
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