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9.2 Minimally nonideal clutters different from the deltas

Today we will finish Lehman’s characterizations of mni clutters different from the deltas. We started the proof

of the following theorem last time:

Theorem 9.9 (Lehman 1990 [4]). Let C be a minimally nonideal clutter over ground set E that is not a delta,

and let n := |E|. Let x? be a fractional extreme point of {1 ≥ x ≥ 0 : M(C)x ≥ 1}. Then the following

statements hold:

(1) 0 < x? < 1,

(2) x? lies on exactly n facets, that correspond to members C1, . . . , Cn ∈ C – so x? is a simple vertex,

(3) the n neighbors of x? are integral vertices, that correspond to covers B1, . . . , Bn labeled so that for distinct

i, j ∈ [n], |Ci ∩Bi| > 1 and |Ci ∩Bj | = 1,

(4) B1, . . . , Bn are minimal covers,

(5) C1, . . . , Cn are precisely the minimum cardinality members of C,

(6) x? is the unique fractional extreme point of {1 ≥ x ≥ 0 : M(C)x ≥ 1},

(7) there is an integer d ≥ 1 such that for each i ∈ [n], |Ci ∩Bi| = 1 + d.

In particular, x? is the unique fractional extreme point of {x ≥ 0 : M(C)x ≥ 1}.

Proof. We have already proved (1) and the following claim:

Claim 1. Let x? be a fractional extreme point of P , and let A be an n×n nonsingular submatrix of M(C) such

that Ax? = 1. Then A is cross regular.

We’ll now use this claim to prove the following two claims:

Claim 2. Every fractional extreme point of P is simple, that is, it lies on exactly n facets. Thus (2) holds.
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Proof of Claim. Suppose for a contradiction that P has a non-simple fractional extreme point x?. Let A be an

n×n nonsingular submatrix of M(C) such that Ax? = 1. As x? is non-simple, there is another row a′ of M(C)
such that a′>x? = 1. Pick a row a of A such that the matrix A′ obtained by replacing a and a′ is nonsingular.

(To find a, write a′ as a linear combination of the rows of A, and pick a row a whose coefficient is nonzero.)

Then by Claim 1, both A and A′ are cross regular, a contradiction to Lemma 9.8 (2) as A and A′ differ in exactly

one row. ♦

Claim 3. P does not have neighboring fractional extreme points. Thus (3) holds.

Proof of Claim. Suppose for a contradiction that P has neighboring fractional extreme points x?, y?. Then there

are n× n nonsingular submatrices A,B of M(C) that differ in exactly one row such that Ax? = 1 = By?. By

Claim 1, both A and B are cross regular, a contradiction to Lemma 9.8 (2). ♦

Now pick a fractional extreme point x? of P . By Claims 2 and 3, x? lies on n facets and has precisely n

neighbors, all of which are integral. Let C1, . . . , Cn ∈ C be the members corresponding to the facets x? sits on,

and let B1, . . . , Bn be the covers corresponding to the neighbors of x?, where our labeling satisfies for i, j ∈ [n]

the following:

|Ci ∩Bj |
{
> 1 if i = j

= 1 if i 6= j.

Let A (resp. B) be the 0− 1 matrix whose columns are labeled by E and whose rows are the incidence vectors

of C1, . . . , Cn (resp. B1, . . . , Bn). Then the equalities above imply that

AB> = J + Diag (|C1 ∩B1| − 1, . . . , |Cn ∩Bn| − 1) .

In particular, AB> is nonsingular, implying in turn that B is nonsingular. Moreover, by Claim 1, A is cross

regular. Let G be the bipartite representation of A, where column e and row C are adjacent if e /∈ C. Since

A is cross regular, it follows that adjacent vertices of G have the same degree. In particular, every connected

component of G is regular and so it has the same number of vertices in the two parts of the bipartition.

Claim 4. G is connected.

Proof of Claim. Suppose for a contradiction that G is not connected. Then there exist a partition of the rows of

A into nonempty parts X1, X2 and a partition of the columns of A into nonempty parts Y1, Y2 ⊆ E such that

|X1| = |Y1|, |X2| = |Y2|, and the (X2, Y1) and (X1, Y2) blocks of A are submatrices of all ones. If |Y1| = 1

or |Y2| = 1, then A has a row with n − 1 ones, so C has a delta minor by Theorem 9.3, implying in turn by

minimality that C is a delta, a contradiction as C is not a delta. Otherwise, |X1| = |Y1| ≥ 2 and |X2| = |Y2| ≥ 2.

As a result, for each i ∈ [n], |Bi ∩ Y1| = |Bi ∩ Y2| = 1, implying in turn that the columns of the matrix

B corresponding to Y1 have the same sum as the columns of B corresponding to Y2, a contradiction as B is

nonsingular. ♦
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In particular,G is a regular graph, implying in turn that for some integer r ≥ 2, every row and every column ofA

has exactly r ones – this has two consequences. Firstly, each Bi is a minimal cover. For if not, then Bi−{e} is a

cover for some e ∈ Bi, implying in turn that column e of A has at least n− 1 zero entries, implying in turn that

r ≤ 1, which is not the case. Thus (4) holds. Secondly, since A is nonsingular, it follows that x? =
(
1
r

1
r · · ·

1
r

)
.

As a result, as x? ∈ P , every row of M(C) has at least r ones, and as x? is simple, every row of M(C) not

in A has at least r + 1 ones, so (5) holds. In particular, we cannot run this argument for another fractional

extreme point, so x? is the unique fractional extreme point of P , so (6) holds. Finally, for each i ∈ [n], let

di := |Ci ∩Bi| − 1 ∈ {1, . . . , r − 1}, and let D := Diag(d1, . . . , dn). Then

(n+ d1, n+ d2, . . . , n+ dn) = 1>(J +D) = 1>(AB>) = (1>A)B> = r · (B1)>.

Since there is at most one multiple of r in {n + 1, . . . , n + r − 1}, it follows that d := d1 = d2 = · · · = dn,

implying in turn that (7) holds, thereby finishing the proof.

For an integer k ≥ 1, a square 0 − 1 matrix is k-regular if every row and every column has exactly k ones.

We will need the following tool:

Theorem 9.10 (Bridges and Ryser 1969 [2]). Take an integer n ≥ 3, and let A,B be n× n matrices with 0− 1

entries such that

AB = J + dI

for some integer d ≥ 1. Then A,B are nonsingular matrices that commute

BA = J + dI,

and for some integers r, s ≥ 2 such that rs = n+ d, A is r-regular and B is s-regular.

Proof. As J + dI is nonsingular, it follows that both A,B are nonsingular matrices. In particular, neither A nor

B has a zero row or a zero column. We have

I = (J + dI)

(
1

d
I − 1

d(n+ d)
J

)
= (AB)

(
1

d
I − 1

d(n+ d)
J

)
= A

(
1

d
B − 1

d(n+ d)
BJ

)
,

so A and 1
dB −

1
d(n+d)BJ are inverses of one another. Thus,

I =

(
1

d
B − 1

d(n+ d)
BJ

)
A =

1

d
BA− 1

d(n+ d)
(B1)(A>1)>,

so

BA =
1

n+ d
(B1)(A>1)> + dI.

For each i ∈ [n], denote by si ∈ {1, 2, . . . , n} the number of ones in row i of B, and by ri ∈ {1, 2, . . . , n} the

number of ones in column i of A. Then the previous equation implies that

(1) for all i, j ∈ [n], n+ d | sirj .
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As trace(AB) = trace(BA), it follows that

n+ nd =
1

n+ d

n∑
i=1

siri + nd,

so

n(n+ d) =

n∑
i=1

siri ≥ n(n+ d),

implying in turn that

(2) for each i ∈ [n], n+ d = siri.

(1) and (2) imply that r := r1 = r2 = · · · = rn and s := s1 = s2 = · · · = sn. As a consequence,

BA =
1

n+ d
(B1)(A>1)> + dI = J + dI = AB.

Analyzing the equation AB = J + dI , we proved that every row of B has the same s number of ones, and

every column of A has the same r number of ones. The same argument on the equation BA = J + dI implies

that every row of A has the same number of ones, and the number inevitably has to be r, while every column

of B has the same number of ones, and the number inevitably has to be s. In particular, A is r-regular and B is

s-regular. As rs = n+ d and r, s < n+ d, it follows that r, s ≥ 2, thereby finishing the proof.

We are now ready for Lehman’s combinatorial characterization of the mni clutters different from the deltas:

Theorem 9.11 (Lehman 1990 [4]). Suppose C is a minimally nonideal clutter over ground set E that is not a

delta, and let B := b(C). Denote by C,B the clutters over ground set E of the minimum cardinality members of

C,B, respectively. Then

(1) M(C) and M(B) are square and nonsingular matrices,

(2) for some integers r ≥ 2 and s ≥ 2, M(C) is r-regular and M(B) is s-regular,

(3) for n := |E|, rs ≥ n+ 1,

(4) after possibly permuting the rows of M(B), we have

M(C)M(B)> = J + (rs− n)I = M(B)>M(C),

that is, there is a labeling C1, . . . , Cn of the members of C and a labeling B1, . . . , Bn of the members of B
such that for all i, j ∈ [n],

|Ci ∩Bj | =

rs− n+ 1 if i = j

1 if i 6= j,

and for all elements g, h ∈ E,

∣∣{i ∈ [n] : g ∈ Ci, h ∈ Bi

}∣∣ =

rs− n+ 1 if g = h

1 if g 6= h.
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Proof. Let x? ∈ [0, 1]E be a fractional extreme point of P (C). After applying Theorem 9.9 to the mni clutter

C, we get the following implications. The point x? ∈ [0, 1]E is the unique fractional extreme point of P (C),

1 > x? > 0 and x? is simple. Let A be the submatrix of M(C) such that Ax? = 1. We have that A = M(C).

Let B1, . . . , Bn be the minimal covers that correspond to the neighbors of x?, and let B be the matrix whose

rows are the incidence vectors of B1, . . . , Bn. Then after possibly permuting the rows of B, AB> = J + dI for

some integer d ≥ 1.

It now follows from Theorem 9.10 that A,B are nonsingular matrices such that AB> = J + dI = B>A,

and for some integers r, s ≥ 2 such that rs = n + d, A is r-regular and B is s-regular. To finish the proof, it

remains to show thatB = M(B). To this end, notice that x? is equal to ( 1
r · · ·

1
r ), and the neighbors of x? lie on

the hyperplane
∑n

i=1 xi = s. Therefore, the inequality
∑n

i=1 xi ≥ s is valid for all the integer extreme points

of P , implying in turn that every member of B has cardinality at least s. As a result, ( 1
s · · ·

1
s ) is a fractional

extreme point of P (B). Applying Theorem 9.9 to the mni clutter B, we see that ( 1
s · · ·

1
s ) must be the unique

fractional extreme point of P (B) and B = M(B), as required.

9.3 Immediate applications

The first application of Theorem 9.11 is that {∆n : n ≥ 4} are the only mni clutters requiring unequal weights

to violate the width-length inequality. The following application is the true analogue of the max-max inequality,

Theorem 5.5:

Theorem 9.12. A clutter without a {∆n : n ≥ 4} minor is ideal if, and only if, for each minor C over ground

set E,

min {|C| : C ∈ C} ·min {|B| : B ∈ b(C)} ≤ |E|.

Proof. If the clutter is ideal, then the inequality follows from the width-length inequality of Theorem 7.8. Con-

versely, it suffices to prove that for an mni clutter C over ground set E that is not one of ∆n, n ≥ 4,

min{|C| : C ∈ C} ·min{|B| : B ∈ b(C)} > |E|.

This is obviously true if C ∼= ∆3. Otherwise, C is not a delta, and let n, r, s be the parameters as in Theorem 9.11.

Then the inequality rs ≥ n+ 1 implies the inequality above, as required.

A second application of Theorem 9.11 is the following truly remarkable result that, to test the integrality of

an n-dimensional set covering polyhedron, it is sufficient to test just 3n directions:

Theorem 9.13. If C is a minimally nonideal clutter, then

min{1>x : M(C)x ≥ 1, x ≥ 0}

has no integral optimal solution. As a consequence, if C is a nonideal clutter over ground set E, then there exists

a w ∈ {0, 1,+∞}E such that

min{w>x : M(C)x ≥ 1, x ≥ 0}
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has no integral optimal solution.

Proof. If C is a delta, then the result follows from Theorem 9.2 (2). Otherwise, C is not a delta, and let n, r, s

be as in Theorem 9.11. As every member has cardinality at least r, it follows that x? :=
(
1
r

1
r · · ·

1
r

)
is a

feasible solution, and its objective value is n
r ≤

rs−1
r < s. However, the minimum cardinality of a cover is s, so

min{1>x : M(C)x ≥ 1, x ≥ 0} has no integral optimal solution. The second part follows from the first part

after applying Remark 7.10.

A clutter C fractionally packs if it has a fractional packing of value τ(C). It follows from the preceding

theorem that an mni clutter does not fractionally pack. Thus,

Theorem 9.14. A clutter is ideal if, and only if, every minor fractionally packs.

We say that a clutter has the packing property if every minor packs. An immediate consequence of the

preceding theorem is that,

Corollary 9.15. If a clutter has the packing property, then it is ideal.

Conforti and Cornuéjols 1993 [3] conjecture that if a clutter has the packing property, then it must be Men-

gerian!
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