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8.2 T -joins and T -cuts

Let G = (V,E) be a graph where loops and parallel edges are allowed; however, loops are thought of as vertex-

less edges. For an edge subset J ⊆ E, denote by odd(J) ⊆ V the set of vertices incident with an odd number

of edges of J . Clearly odd(J) has even cardinality. Notice that

odd(J1)4odd(J2) = odd(J14J2) J1, J2 ⊆ E,

where 4 is the symmetric difference operator. A subset C ⊆ E is a cycle if odd(C) = ∅. Observe that ∅ and

loops are cycles. A circuit is a nonempty cycle that does not properly contain another nonempty cycle. We leave

the following as an exercise:

Remark 8.6. Let G = (V,E) be a graph, and take a nonempty subset C ⊆ E. The C is a cycle if, and only if,

C is a disjoint union of circuits.

We will use this basic observation without reference. Take a subset T ⊆ V of even cardinality. A T -join is an

edge subset J ⊆ E such that odd(J) = T . For instance, ∅-joins are precisely cycles, and for distinct vertices

s, t ∈ V , every st-path is an {s, t}-join.

Remark 8.7. Take a graph G = (V,E), a subset T ⊆ V of even cardinality, and a T -join J . Then

{J ′ ⊆ E : J ′ is a T -join} = {J4C : C is a cycle}.

Proof. Suppose first that J ′ ⊆ E is a T -join. Then odd(J ′4J) = odd(J ′)4odd(J) = T4T = ∅, so

J ′4J is a cycle, and as J ′ = J4(J ′4J), we are done. Conversely, take a cycle C. Then odd(J4C) =

odd(J)4odd(C) = T4∅ = T , so J4C is a T -join and we are done.

Given a graph and a vertex subset T of even cardinality, what is the minimum cardinality of a T -join? When

T = ∅, the answer is zero as ∅ is a T -join. We may therefore focus on nonempty T . The two remarks above

provide the following partial answer to this question:

Remark 8.8 (Sebő 1987 [1]). Take a graph G = (V,E), a nonempty subset T ⊆ V of even cardinality, and a

T -join J . Define weights w ∈ {−1, 1}E as follows: for each e ∈ J set we := −1, and for each e ∈ E − J set

we := 1. Then the following statements are equivalent:
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• J is a minimum T -join,

• there is no cycle of total negative weight,

• there is no circuit of total negative weight.

Take a graph G = (V,E) and a nonempty subset T ⊆ V of even cardinality. A T -cut is a cut of the form

δ(U) ⊆ E where |U ∩ T | is odd. For instance, for distinct vertices s, t of G, an st-cut is an {s, t}-cut.

Proposition 8.9. Take a graph G = (V,E) and a nonempty subset T ⊆ V of even cardinality. Let C be the

clutter of minimal T -joins over ground set E. Then b(C) is the clutter of minimal T -cuts.

Proof. We need to show that (a) every T -cut is a cover of C, and (b) every cover of C contains a T -cut. (a) Take

a T -cut δ(U). We need to show that δ(U) intersects every T -join. Suppose otherwise. Take a T -join J such that

J ∩ δ(U) = ∅. Then the odd-degree vertices of J ∩ E(G[U ]) are precisely T ∩ U , a contradiction as |T ∩ U |
is odd. (b) Conversely, let B ⊆ E be a cover of C. Then the graph H := G \ B does not contain a T -join. To

prove that B contains a T -cut of G, it suffices to argue why H has an empty T -cut. To this end, let A be the

vertex-edge incidence matrix of H , and let b ∈ {0, 1}V be the incidence vector of T ⊆ V . (So the loops of H

are the zero columns of A.) Since H has no T -join, it follows that the system

Ax ≡ b (mod 2)

has no 0− 1 solution. By the Farkas Lemma for binary spaces, there is a certificate c ∈ {0, 1}V such that

c>A ≡ 0 and c>b ≡ 1 (mod 2).

Pick U ⊆ V such that c = χU . The second equation implies that |U ∩ T | is odd, while the first equation implies

that δ(U) is an empty cut of H , so δ(U) is an empty T -cut of H , as required.

Let’s see what minors of the clutter of minimal T -joins correspond to in terms of the graph. Let G = (V,E)

be a graph and take a possibly empty subset T ⊆ V of even cardinality. Let C be the clutter of minimal T -joins

over ground set E. Take an edge e ∈ E. The deletion (G,T )\e is the pair (G\e, T ). It is clear that the minimal

T -joins of (G,T ) \ e are the members of C \ e. The contraction (G,T )/e is the pair (G/e, T ′) where1

T ′ =

{
T − e if |e ∩ T | is even
(T − e) ∪ {shrunk vertex} if |e ∩ T | is odd.

Observe that T ′ is a set of even cardinality. Notice that if J is a T -join of G, then J − {e} is a T ′-join of G/e.

Conversely, if J ′ is a T ′-join of G/e, then J ′ ∪ {e} contains a T -join of G. Hence, the minimal T ′-joins of

(G,T )/e are the members of C/e. For disjoint subsets I, J ⊆ E, the minor (G,T ) \ I/J is what is obtained

after deleting I and contracting J . Notice that the minimal T ′-joins of (G \ I/J, T ′) := (G,T ) \ I/J are the

members of C \ I/J .

1In this setting, to contract a loop is to delete it.
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Let’s get back to our question regarding minimum T -joins. Notice that the minimum cardinality of a T -

join is equal to the covering number of the clutter of minimal T -cuts. So does the clutter of minimal T -cuts

necessarily pack? Consider the complete graph K4 on 4 vertices, let T := V (K4), and let C be its clutter of

minimal T -cuts. Then C consists of the claws ofK4, and the blocker b(C) – the minimal T -joins – consists of the

claws as well as the perfect matchings. So τ(C) = 2, and as there are no disjoint claws, it follows that ν(C) = 1,

so C does not pack. Despite this shortcoming, we can prove the following result. The proof we present is due to

Sebő 1987 [1].

Theorem 8.10 (Seymour 1981 [2]). Take a bipartite graph G = (V,E), and a nonempty subset T ⊆ V of even

cardinality. Then the minimum cardinality of a T -join is equal to the maximum number of disjoint T -cuts. That

is, the clutter of minimal T -cuts of a bipartite graph packs.

Proof. We proceed by induction on the number of vertices of G. The base case |V | = 2 holds trivially. For the

induction step, assume that |V | ≥ 3. Denote by τ the minimum cardinality of a T -join. We will construct τ

disjoint T -cuts. If τ = 1, then we are done. We may therefore assume that τ ≥ 2. Among all minimum T -joins,

pick the one J whose longest path is the longest compared to the other ones. Define weights w ∈ {−1, 1}E as

follows: for each e ∈ J set we := −1, and for each e ∈ E − J set we := 1. By Remark 8.8, G has no negative

cycle, and as G is bipartite, every cycle has even weight.

Let Q be the longest path contained in J and let u, v be its ends. As Q is the longest path in J , and as G has

no negative cycle, it follows that u, v each have degree 1 in J . In particular, u, v ∈ odd(J) = T . Let e? be the

edge of Q incident with u. Then J ∩ δ(u) = {e?}.

Claim 1. If C is a circuit such that C ∩ δ(u) 6= ∅ and e? /∈ C, then w(C) ≥ 2.

Proof of Claim. Suppose otherwise. Since w(C) ≥ 0 and w(C) is even, it follows that w(C) = 0. So J4C is

another minimum T -join, and as Q cannot be extended to a longer path in J4C, Q and C must share a vertex

other than u. Among all the vertices in V (Q) − {u} that also belong to V (C), pick the one w that is closest

to u on Q. Let Q′ be the uw-path in Q; as e? /∈ C, it follows that Q′ 6= ∅ and Q′ ∩ C = ∅. Let P1, P2 be

the two uw-paths partitioning C. Since w(P1) + w(P2) = w(C) = 0 and w(Q′) < 0, it follows that one of

P1 ∪Q′, P2 ∪Q′ is a negative circuit, a contradiction. ♦

Claim 2. u cannot be adjacent to all the other vertices in T .

Proof of Claim. Suppose otherwise. In particular, u and v are adjacent, and as G has no negative cycle, Q has

length 1. Since Q is the longest path in J , it follows that J is a matching, and as τ ≥ 2, the matching has an

edge other than the edge of Q. Since u is adjacent to the other matched vertices, G has a triangle, a contradiction

as G is bipartite. ♦

Let (G′, T ′) := (G,T )/δ(u). Notice thatG′ is still a bipartite graph, and by Claim 2, T ′ 6= ∅. Let J ′ := J−δ(u).
Then J ′ is a T ′-join of G′ of length τ − 1. In fact,

3



Claim 3. J ′ is a minimum T ′-join of G′.

Proof of Claim. Define weights w′ ∈ {−1, 1}E(G′) on the edges of G′ as follows: for each e ∈ J ′ set w′(e) :=

−1, and for each e ∈ E(G′) − J ′ set w′(e) := 1. Notice that w′ is simply the restriction of w to E − δ(u) =
E(G′). To prove that J ′ is a minimum T ′-join of G′, it suffices by Remark 8.8 to show that G′ does not have a

negative circuit. To this end, let C ′ be a circuit of G′, and let C be a circuit of G such that C ′ ⊆ C ⊆ C ′ ∪ δ(u).
If C = C ′ or e? ∈ C, then w′(C ′) = w(C) ≥ 0. Otherwise, C ∩ δ(u) 6= ∅ and e? /∈ C. It therefore follows

from Claim 1 that

w′(C ′) = w(C)− 2 ≥ 0,

as required. ♦

Thus, by the induction hypothesis, G′ has τ − 1 disjoint T -cuts; these are also disjoint T -cuts of G, and together

with δ(u), they give τ disjoint T -cuts in G, thereby completing the induction step. This finishes the proof.
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